|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wnut_17 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: distilbert-base-multilingual-cased-WNUT-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wnut_17 |
|
type: wnut_17 |
|
config: wnut_17 |
|
split: test |
|
args: wnut_17 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.5496503496503496 |
|
- name: Recall |
|
type: recall |
|
value: 0.36422613531047265 |
|
- name: F1 |
|
type: f1 |
|
value: 0.4381270903010034 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9468667179618706 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbert-base-multilingual-cased-WNUT-ner |
|
|
|
This model is a fine-tuned version of [distilbert-base-multilingual-cased](https://huggingface.co/distilbert-base-multilingual-cased) on the wnut_17 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3516 |
|
- Precision: 0.5497 |
|
- Recall: 0.3642 |
|
- F1: 0.4381 |
|
- Accuracy: 0.9469 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 213 | 0.2727 | 0.6626 | 0.2530 | 0.3662 | 0.9402 | |
|
| No log | 2.0 | 426 | 0.2636 | 0.5895 | 0.2715 | 0.3718 | 0.9429 | |
|
| 0.1729 | 3.0 | 639 | 0.2933 | 0.5931 | 0.3040 | 0.4020 | 0.9447 | |
|
| 0.1729 | 4.0 | 852 | 0.2861 | 0.5437 | 0.3457 | 0.4227 | 0.9453 | |
|
| 0.0503 | 5.0 | 1065 | 0.3270 | 0.5627 | 0.3494 | 0.4311 | 0.9455 | |
|
| 0.0503 | 6.0 | 1278 | 0.3277 | 0.5451 | 0.3531 | 0.4286 | 0.9463 | |
|
| 0.0503 | 7.0 | 1491 | 0.3471 | 0.5828 | 0.3457 | 0.4340 | 0.9467 | |
|
| 0.0231 | 8.0 | 1704 | 0.3594 | 0.5801 | 0.3457 | 0.4332 | 0.9464 | |
|
| 0.0231 | 9.0 | 1917 | 0.3550 | 0.5567 | 0.3503 | 0.4300 | 0.9467 | |
|
| 0.0121 | 10.0 | 2130 | 0.3516 | 0.5497 | 0.3642 | 0.4381 | 0.9469 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|