metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- super_glue
metrics:
- accuracy
model-index:
- name: '20230831011453'
results: []
20230831011453
This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:
- Loss: 0.4974
- Accuracy: 0.5
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0007
- train_batch_size: 16
- eval_batch_size: 8
- seed: 11
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 80.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 340 | 0.5155 | 0.5 |
0.5119 | 2.0 | 680 | 0.5111 | 0.5 |
0.51 | 3.0 | 1020 | 0.5526 | 0.5078 |
0.51 | 4.0 | 1360 | 0.5257 | 0.5 |
0.5162 | 5.0 | 1700 | 0.5071 | 0.5 |
0.5071 | 6.0 | 2040 | 0.4929 | 0.5 |
0.5071 | 7.0 | 2380 | 0.4955 | 0.5 |
0.509 | 8.0 | 2720 | 0.5280 | 0.5 |
0.5022 | 9.0 | 3060 | 0.4958 | 0.5 |
0.5022 | 10.0 | 3400 | 0.4944 | 0.5 |
0.5017 | 11.0 | 3740 | 0.4931 | 0.5 |
0.5011 | 12.0 | 4080 | 0.4944 | 0.5 |
0.5011 | 13.0 | 4420 | 0.5177 | 0.5 |
0.4978 | 14.0 | 4760 | 0.4933 | 0.5 |
0.5039 | 15.0 | 5100 | 0.5001 | 0.5 |
0.5039 | 16.0 | 5440 | 0.4929 | 0.5 |
0.5008 | 17.0 | 5780 | 0.4961 | 0.5 |
0.4986 | 18.0 | 6120 | 0.4948 | 0.5 |
0.4986 | 19.0 | 6460 | 0.4993 | 0.5 |
0.499 | 20.0 | 6800 | 0.4943 | 0.5 |
0.4981 | 21.0 | 7140 | 0.4930 | 0.5 |
0.4981 | 22.0 | 7480 | 0.5119 | 0.5 |
0.5013 | 23.0 | 7820 | 0.4972 | 0.5 |
0.498 | 24.0 | 8160 | 0.4938 | 0.5 |
0.5 | 25.0 | 8500 | 0.4946 | 0.5 |
0.5 | 26.0 | 8840 | 0.5212 | 0.5 |
0.4994 | 27.0 | 9180 | 0.5028 | 0.5 |
0.4978 | 28.0 | 9520 | 0.4929 | 0.5 |
0.4978 | 29.0 | 9860 | 0.4993 | 0.5 |
0.4991 | 30.0 | 10200 | 0.4925 | 0.5 |
0.4987 | 31.0 | 10540 | 0.4929 | 0.5 |
0.4987 | 32.0 | 10880 | 0.5076 | 0.5 |
0.4989 | 33.0 | 11220 | 0.4931 | 0.5 |
0.4982 | 34.0 | 11560 | 0.5071 | 0.5 |
0.4982 | 35.0 | 11900 | 0.4959 | 0.5 |
0.4978 | 36.0 | 12240 | 0.5013 | 0.5 |
0.4982 | 37.0 | 12580 | 0.4927 | 0.5 |
0.4982 | 38.0 | 12920 | 0.4938 | 0.5 |
0.4968 | 39.0 | 13260 | 0.5018 | 0.5 |
0.4961 | 40.0 | 13600 | 0.4958 | 0.5 |
0.4961 | 41.0 | 13940 | 0.4928 | 0.5 |
0.4969 | 42.0 | 14280 | 0.4950 | 0.5 |
0.4951 | 43.0 | 14620 | 0.4929 | 0.5 |
0.4951 | 44.0 | 14960 | 0.4928 | 0.5 |
0.4964 | 45.0 | 15300 | 0.4965 | 0.5 |
0.4943 | 46.0 | 15640 | 0.4943 | 0.5 |
0.4943 | 47.0 | 15980 | 0.4982 | 0.5 |
0.4965 | 48.0 | 16320 | 0.4926 | 0.5 |
0.497 | 49.0 | 16660 | 0.4969 | 0.5 |
0.4959 | 50.0 | 17000 | 0.4930 | 0.5 |
0.4959 | 51.0 | 17340 | 0.4928 | 0.5 |
0.4932 | 52.0 | 17680 | 0.4926 | 0.5 |
0.4969 | 53.0 | 18020 | 0.4961 | 0.5 |
0.4969 | 54.0 | 18360 | 0.4935 | 0.5 |
0.4937 | 55.0 | 18700 | 0.4926 | 0.5 |
0.4937 | 56.0 | 19040 | 0.4926 | 0.5 |
0.4937 | 57.0 | 19380 | 0.5036 | 0.5 |
0.4951 | 58.0 | 19720 | 0.4930 | 0.5 |
0.4939 | 59.0 | 20060 | 0.5071 | 0.5 |
0.4939 | 60.0 | 20400 | 0.4927 | 0.5 |
0.4929 | 61.0 | 20740 | 0.4928 | 0.5 |
0.4926 | 62.0 | 21080 | 0.4928 | 0.5 |
0.4926 | 63.0 | 21420 | 0.4936 | 0.5 |
0.4917 | 64.0 | 21760 | 0.4967 | 0.5 |
0.4951 | 65.0 | 22100 | 0.4941 | 0.5 |
0.4951 | 66.0 | 22440 | 0.5071 | 0.5 |
0.4895 | 67.0 | 22780 | 0.4932 | 0.5 |
0.4939 | 68.0 | 23120 | 0.4930 | 0.5 |
0.4939 | 69.0 | 23460 | 0.4938 | 0.5 |
0.4919 | 70.0 | 23800 | 0.4935 | 0.5 |
0.4915 | 71.0 | 24140 | 0.4934 | 0.5 |
0.4915 | 72.0 | 24480 | 0.4962 | 0.5 |
0.4898 | 73.0 | 24820 | 0.4958 | 0.5 |
0.4919 | 74.0 | 25160 | 0.4967 | 0.5 |
0.4905 | 75.0 | 25500 | 0.4961 | 0.5 |
0.4905 | 76.0 | 25840 | 0.4986 | 0.5 |
0.4908 | 77.0 | 26180 | 0.4958 | 0.5 |
0.4897 | 78.0 | 26520 | 0.4974 | 0.5 |
0.4897 | 79.0 | 26860 | 0.4992 | 0.5 |
0.4897 | 80.0 | 27200 | 0.4974 | 0.5 |
Framework versions
- Transformers 4.26.1
- Pytorch 2.0.1+cu118
- Datasets 2.12.0
- Tokenizers 0.13.3