|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- super_glue |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: '20230826092050' |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 20230826092050 |
|
|
|
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4268 |
|
- Accuracy: 0.37 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 11 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 80.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 25 | 0.5239 | 0.61 | |
|
| No log | 2.0 | 50 | 0.4231 | 0.45 | |
|
| No log | 3.0 | 75 | 0.4342 | 0.48 | |
|
| No log | 4.0 | 100 | 0.4309 | 0.43 | |
|
| No log | 5.0 | 125 | 0.4262 | 0.58 | |
|
| No log | 6.0 | 150 | 0.4267 | 0.49 | |
|
| No log | 7.0 | 175 | 0.4263 | 0.61 | |
|
| No log | 8.0 | 200 | 0.4268 | 0.49 | |
|
| No log | 9.0 | 225 | 0.4267 | 0.56 | |
|
| No log | 10.0 | 250 | 0.4268 | 0.51 | |
|
| No log | 11.0 | 275 | 0.4275 | 0.4 | |
|
| No log | 12.0 | 300 | 0.4269 | 0.46 | |
|
| No log | 13.0 | 325 | 0.4267 | 0.62 | |
|
| No log | 14.0 | 350 | 0.4267 | 0.55 | |
|
| No log | 15.0 | 375 | 0.4268 | 0.42 | |
|
| No log | 16.0 | 400 | 0.4268 | 0.45 | |
|
| No log | 17.0 | 425 | 0.4270 | 0.44 | |
|
| No log | 18.0 | 450 | 0.4267 | 0.6 | |
|
| No log | 19.0 | 475 | 0.4268 | 0.61 | |
|
| 1.2569 | 20.0 | 500 | 0.4268 | 0.38 | |
|
| 1.2569 | 21.0 | 525 | 0.4268 | 0.57 | |
|
| 1.2569 | 22.0 | 550 | 0.4267 | 0.61 | |
|
| 1.2569 | 23.0 | 575 | 0.4267 | 0.59 | |
|
| 1.2569 | 24.0 | 600 | 0.4267 | 0.54 | |
|
| 1.2569 | 25.0 | 625 | 0.4268 | 0.53 | |
|
| 1.2569 | 26.0 | 650 | 0.4268 | 0.38 | |
|
| 1.2569 | 27.0 | 675 | 0.4267 | 0.61 | |
|
| 1.2569 | 28.0 | 700 | 0.4268 | 0.43 | |
|
| 1.2569 | 29.0 | 725 | 0.4268 | 0.61 | |
|
| 1.2569 | 30.0 | 750 | 0.4268 | 0.43 | |
|
| 1.2569 | 31.0 | 775 | 0.4268 | 0.43 | |
|
| 1.2569 | 32.0 | 800 | 0.4268 | 0.54 | |
|
| 1.2569 | 33.0 | 825 | 0.4268 | 0.47 | |
|
| 1.2569 | 34.0 | 850 | 0.4268 | 0.43 | |
|
| 1.2569 | 35.0 | 875 | 0.4268 | 0.43 | |
|
| 1.2569 | 36.0 | 900 | 0.4268 | 0.64 | |
|
| 1.2569 | 37.0 | 925 | 0.4268 | 0.45 | |
|
| 1.2569 | 38.0 | 950 | 0.4268 | 0.43 | |
|
| 1.2569 | 39.0 | 975 | 0.4268 | 0.41 | |
|
| 0.9505 | 40.0 | 1000 | 0.4267 | 0.58 | |
|
| 0.9505 | 41.0 | 1025 | 0.4267 | 0.59 | |
|
| 0.9505 | 42.0 | 1050 | 0.4268 | 0.56 | |
|
| 0.9505 | 43.0 | 1075 | 0.4268 | 0.43 | |
|
| 0.9505 | 44.0 | 1100 | 0.4268 | 0.49 | |
|
| 0.9505 | 45.0 | 1125 | 0.4268 | 0.58 | |
|
| 0.9505 | 46.0 | 1150 | 0.4267 | 0.59 | |
|
| 0.9505 | 47.0 | 1175 | 0.4267 | 0.6 | |
|
| 0.9505 | 48.0 | 1200 | 0.4267 | 0.63 | |
|
| 0.9505 | 49.0 | 1225 | 0.4268 | 0.44 | |
|
| 0.9505 | 50.0 | 1250 | 0.4268 | 0.52 | |
|
| 0.9505 | 51.0 | 1275 | 0.4268 | 0.4 | |
|
| 0.9505 | 52.0 | 1300 | 0.4268 | 0.46 | |
|
| 0.9505 | 53.0 | 1325 | 0.4268 | 0.47 | |
|
| 0.9505 | 54.0 | 1350 | 0.4268 | 0.51 | |
|
| 0.9505 | 55.0 | 1375 | 0.4268 | 0.44 | |
|
| 0.9505 | 56.0 | 1400 | 0.4268 | 0.55 | |
|
| 0.9505 | 57.0 | 1425 | 0.4267 | 0.54 | |
|
| 0.9505 | 58.0 | 1450 | 0.4267 | 0.55 | |
|
| 0.9505 | 59.0 | 1475 | 0.4267 | 0.54 | |
|
| 0.7437 | 60.0 | 1500 | 0.4267 | 0.58 | |
|
| 0.7437 | 61.0 | 1525 | 0.4268 | 0.57 | |
|
| 0.7437 | 62.0 | 1550 | 0.4268 | 0.42 | |
|
| 0.7437 | 63.0 | 1575 | 0.4268 | 0.41 | |
|
| 0.7437 | 64.0 | 1600 | 0.4268 | 0.44 | |
|
| 0.7437 | 65.0 | 1625 | 0.4268 | 0.47 | |
|
| 0.7437 | 66.0 | 1650 | 0.4268 | 0.41 | |
|
| 0.7437 | 67.0 | 1675 | 0.4268 | 0.54 | |
|
| 0.7437 | 68.0 | 1700 | 0.4268 | 0.4 | |
|
| 0.7437 | 69.0 | 1725 | 0.4268 | 0.41 | |
|
| 0.7437 | 70.0 | 1750 | 0.4268 | 0.4 | |
|
| 0.7437 | 71.0 | 1775 | 0.4268 | 0.41 | |
|
| 0.7437 | 72.0 | 1800 | 0.4268 | 0.42 | |
|
| 0.7437 | 73.0 | 1825 | 0.4268 | 0.43 | |
|
| 0.7437 | 74.0 | 1850 | 0.4268 | 0.41 | |
|
| 0.7437 | 75.0 | 1875 | 0.4268 | 0.41 | |
|
| 0.7437 | 76.0 | 1900 | 0.4268 | 0.4 | |
|
| 0.7437 | 77.0 | 1925 | 0.4268 | 0.4 | |
|
| 0.7437 | 78.0 | 1950 | 0.4268 | 0.41 | |
|
| 0.7437 | 79.0 | 1975 | 0.4268 | 0.38 | |
|
| 0.6146 | 80.0 | 2000 | 0.4268 | 0.37 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|