|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- super_glue |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: '20230826052103' |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 20230826052103 |
|
|
|
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5758 |
|
- Accuracy: 0.73 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.02 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 11 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 80.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 1.0 | 25 | 0.6259 | 0.48 | |
|
| No log | 2.0 | 50 | 0.7321 | 0.62 | |
|
| No log | 3.0 | 75 | 0.7953 | 0.64 | |
|
| No log | 4.0 | 100 | 0.6993 | 0.65 | |
|
| No log | 5.0 | 125 | 0.5882 | 0.62 | |
|
| No log | 6.0 | 150 | 0.5896 | 0.63 | |
|
| No log | 7.0 | 175 | 0.6143 | 0.66 | |
|
| No log | 8.0 | 200 | 0.7070 | 0.63 | |
|
| No log | 9.0 | 225 | 0.6441 | 0.67 | |
|
| No log | 10.0 | 250 | 0.7048 | 0.68 | |
|
| No log | 11.0 | 275 | 0.5610 | 0.7 | |
|
| No log | 12.0 | 300 | 0.6845 | 0.69 | |
|
| No log | 13.0 | 325 | 0.7743 | 0.67 | |
|
| No log | 14.0 | 350 | 0.7745 | 0.68 | |
|
| No log | 15.0 | 375 | 0.7992 | 0.72 | |
|
| No log | 16.0 | 400 | 0.7166 | 0.72 | |
|
| No log | 17.0 | 425 | 0.7013 | 0.75 | |
|
| No log | 18.0 | 450 | 0.8815 | 0.72 | |
|
| No log | 19.0 | 475 | 0.7997 | 0.72 | |
|
| 0.6923 | 20.0 | 500 | 0.7411 | 0.7 | |
|
| 0.6923 | 21.0 | 525 | 0.7322 | 0.71 | |
|
| 0.6923 | 22.0 | 550 | 0.8924 | 0.67 | |
|
| 0.6923 | 23.0 | 575 | 0.7238 | 0.7 | |
|
| 0.6923 | 24.0 | 600 | 0.7785 | 0.71 | |
|
| 0.6923 | 25.0 | 625 | 0.6886 | 0.71 | |
|
| 0.6923 | 26.0 | 650 | 0.7782 | 0.72 | |
|
| 0.6923 | 27.0 | 675 | 0.7322 | 0.71 | |
|
| 0.6923 | 28.0 | 700 | 0.7590 | 0.68 | |
|
| 0.6923 | 29.0 | 725 | 0.7170 | 0.71 | |
|
| 0.6923 | 30.0 | 750 | 0.7993 | 0.71 | |
|
| 0.6923 | 31.0 | 775 | 0.7465 | 0.7 | |
|
| 0.6923 | 32.0 | 800 | 0.6627 | 0.7 | |
|
| 0.6923 | 33.0 | 825 | 0.7128 | 0.7 | |
|
| 0.6923 | 34.0 | 850 | 0.6699 | 0.69 | |
|
| 0.6923 | 35.0 | 875 | 0.6974 | 0.69 | |
|
| 0.6923 | 36.0 | 900 | 0.6626 | 0.7 | |
|
| 0.6923 | 37.0 | 925 | 0.6843 | 0.7 | |
|
| 0.6923 | 38.0 | 950 | 0.6846 | 0.71 | |
|
| 0.6923 | 39.0 | 975 | 0.7098 | 0.71 | |
|
| 0.2907 | 40.0 | 1000 | 0.6845 | 0.71 | |
|
| 0.2907 | 41.0 | 1025 | 0.6782 | 0.71 | |
|
| 0.2907 | 42.0 | 1050 | 0.6635 | 0.7 | |
|
| 0.2907 | 43.0 | 1075 | 0.5903 | 0.7 | |
|
| 0.2907 | 44.0 | 1100 | 0.6072 | 0.71 | |
|
| 0.2907 | 45.0 | 1125 | 0.5961 | 0.72 | |
|
| 0.2907 | 46.0 | 1150 | 0.6115 | 0.72 | |
|
| 0.2907 | 47.0 | 1175 | 0.6240 | 0.71 | |
|
| 0.2907 | 48.0 | 1200 | 0.6327 | 0.72 | |
|
| 0.2907 | 49.0 | 1225 | 0.6935 | 0.71 | |
|
| 0.2907 | 50.0 | 1250 | 0.5864 | 0.73 | |
|
| 0.2907 | 51.0 | 1275 | 0.5779 | 0.72 | |
|
| 0.2907 | 52.0 | 1300 | 0.6013 | 0.73 | |
|
| 0.2907 | 53.0 | 1325 | 0.5665 | 0.75 | |
|
| 0.2907 | 54.0 | 1350 | 0.5745 | 0.76 | |
|
| 0.2907 | 55.0 | 1375 | 0.6108 | 0.75 | |
|
| 0.2907 | 56.0 | 1400 | 0.5844 | 0.75 | |
|
| 0.2907 | 57.0 | 1425 | 0.5647 | 0.77 | |
|
| 0.2907 | 58.0 | 1450 | 0.5844 | 0.76 | |
|
| 0.2907 | 59.0 | 1475 | 0.5720 | 0.75 | |
|
| 0.2156 | 60.0 | 1500 | 0.5815 | 0.72 | |
|
| 0.2156 | 61.0 | 1525 | 0.5615 | 0.73 | |
|
| 0.2156 | 62.0 | 1550 | 0.5820 | 0.75 | |
|
| 0.2156 | 63.0 | 1575 | 0.5712 | 0.73 | |
|
| 0.2156 | 64.0 | 1600 | 0.5682 | 0.72 | |
|
| 0.2156 | 65.0 | 1625 | 0.6267 | 0.73 | |
|
| 0.2156 | 66.0 | 1650 | 0.5815 | 0.74 | |
|
| 0.2156 | 67.0 | 1675 | 0.6171 | 0.73 | |
|
| 0.2156 | 68.0 | 1700 | 0.5554 | 0.74 | |
|
| 0.2156 | 69.0 | 1725 | 0.6060 | 0.72 | |
|
| 0.2156 | 70.0 | 1750 | 0.5575 | 0.73 | |
|
| 0.2156 | 71.0 | 1775 | 0.5885 | 0.73 | |
|
| 0.2156 | 72.0 | 1800 | 0.5571 | 0.73 | |
|
| 0.2156 | 73.0 | 1825 | 0.5845 | 0.73 | |
|
| 0.2156 | 74.0 | 1850 | 0.5710 | 0.73 | |
|
| 0.2156 | 75.0 | 1875 | 0.5680 | 0.73 | |
|
| 0.2156 | 76.0 | 1900 | 0.5799 | 0.73 | |
|
| 0.2156 | 77.0 | 1925 | 0.5636 | 0.73 | |
|
| 0.2156 | 78.0 | 1950 | 0.5738 | 0.73 | |
|
| 0.2156 | 79.0 | 1975 | 0.5750 | 0.73 | |
|
| 0.194 | 80.0 | 2000 | 0.5758 | 0.73 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|