20230826040158 / README.md
dkqjrm's picture
update model card README.md
f140b42
|
raw
history blame
6.25 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - super_glue
metrics:
  - accuracy
model-index:
  - name: '20230826040158'
    results: []

20230826040158

This model is a fine-tuned version of bert-large-cased on the super_glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5369
  • Accuracy: 0.72

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.01
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 11
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 80.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 25 0.6901 0.36
No log 2.0 50 0.7172 0.56
No log 3.0 75 0.6264 0.58
No log 4.0 100 0.5864 0.61
No log 5.0 125 0.5717 0.47
No log 6.0 150 0.6748 0.4
No log 7.0 175 0.5272 0.66
No log 8.0 200 0.5651 0.64
No log 9.0 225 0.5785 0.65
No log 10.0 250 0.5773 0.65
No log 11.0 275 0.5287 0.65
No log 12.0 300 0.5612 0.64
No log 13.0 325 0.5734 0.66
No log 14.0 350 0.5196 0.65
No log 15.0 375 0.5491 0.66
No log 16.0 400 0.5137 0.63
No log 17.0 425 0.5333 0.67
No log 18.0 450 0.5518 0.66
No log 19.0 475 0.5222 0.66
0.7077 20.0 500 0.4976 0.67
0.7077 21.0 525 0.4995 0.67
0.7077 22.0 550 0.5837 0.65
0.7077 23.0 575 0.5801 0.62
0.7077 24.0 600 0.5377 0.63
0.7077 25.0 625 0.5509 0.63
0.7077 26.0 650 0.5863 0.67
0.7077 27.0 675 0.5980 0.65
0.7077 28.0 700 0.6482 0.67
0.7077 29.0 725 0.5851 0.66
0.7077 30.0 750 0.6651 0.67
0.7077 31.0 775 0.5497 0.69
0.7077 32.0 800 0.5907 0.72
0.7077 33.0 825 0.5805 0.68
0.7077 34.0 850 0.5844 0.69
0.7077 35.0 875 0.5750 0.69
0.7077 36.0 900 0.6175 0.7
0.7077 37.0 925 0.5754 0.68
0.7077 38.0 950 0.5758 0.69
0.7077 39.0 975 0.6013 0.69
0.4491 40.0 1000 0.5384 0.68
0.4491 41.0 1025 0.5931 0.7
0.4491 42.0 1050 0.6030 0.7
0.4491 43.0 1075 0.5630 0.67
0.4491 44.0 1100 0.5599 0.67
0.4491 45.0 1125 0.5799 0.66
0.4491 46.0 1150 0.5545 0.69
0.4491 47.0 1175 0.5643 0.68
0.4491 48.0 1200 0.5845 0.7
0.4491 49.0 1225 0.5781 0.69
0.4491 50.0 1250 0.5623 0.7
0.4491 51.0 1275 0.5528 0.69
0.4491 52.0 1300 0.5442 0.71
0.4491 53.0 1325 0.5498 0.69
0.4491 54.0 1350 0.5391 0.7
0.4491 55.0 1375 0.5570 0.71
0.4491 56.0 1400 0.5729 0.71
0.4491 57.0 1425 0.5352 0.72
0.4491 58.0 1450 0.5538 0.7
0.4491 59.0 1475 0.5563 0.71
0.3353 60.0 1500 0.5704 0.71
0.3353 61.0 1525 0.5726 0.7
0.3353 62.0 1550 0.5694 0.7
0.3353 63.0 1575 0.5714 0.71
0.3353 64.0 1600 0.5551 0.7
0.3353 65.0 1625 0.5548 0.7
0.3353 66.0 1650 0.5430 0.7
0.3353 67.0 1675 0.5449 0.71
0.3353 68.0 1700 0.5461 0.71
0.3353 69.0 1725 0.5440 0.71
0.3353 70.0 1750 0.5590 0.71
0.3353 71.0 1775 0.5391 0.71
0.3353 72.0 1800 0.5516 0.71
0.3353 73.0 1825 0.5474 0.72
0.3353 74.0 1850 0.5477 0.72
0.3353 75.0 1875 0.5372 0.71
0.3353 76.0 1900 0.5445 0.71
0.3353 77.0 1925 0.5421 0.71
0.3353 78.0 1950 0.5376 0.7
0.3353 79.0 1975 0.5358 0.72
0.3108 80.0 2000 0.5369 0.72

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.1+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3