update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- super_glue
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: '20230822202056'
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# 20230822202056
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the super_glue dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.1724
|
22 |
+
- Accuracy: 0.7112
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.003
|
42 |
+
- train_batch_size: 8
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 11
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- num_epochs: 60.0
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
53 |
+
| No log | 1.0 | 312 | 0.1785 | 0.5307 |
|
54 |
+
| 0.2552 | 2.0 | 624 | 0.1826 | 0.5054 |
|
55 |
+
| 0.2552 | 3.0 | 936 | 0.3328 | 0.4729 |
|
56 |
+
| 0.24 | 4.0 | 1248 | 0.2050 | 0.4729 |
|
57 |
+
| 0.2369 | 5.0 | 1560 | 0.1750 | 0.6065 |
|
58 |
+
| 0.2369 | 6.0 | 1872 | 0.1752 | 0.4765 |
|
59 |
+
| 0.2199 | 7.0 | 2184 | 0.1799 | 0.5921 |
|
60 |
+
| 0.2199 | 8.0 | 2496 | 0.1896 | 0.4729 |
|
61 |
+
| 0.1955 | 9.0 | 2808 | 0.1727 | 0.6245 |
|
62 |
+
| 0.185 | 10.0 | 3120 | 0.1734 | 0.5668 |
|
63 |
+
| 0.185 | 11.0 | 3432 | 0.1781 | 0.5812 |
|
64 |
+
| 0.184 | 12.0 | 3744 | 0.1711 | 0.6318 |
|
65 |
+
| 0.1819 | 13.0 | 4056 | 0.1783 | 0.4910 |
|
66 |
+
| 0.1819 | 14.0 | 4368 | 0.1703 | 0.6534 |
|
67 |
+
| 0.1793 | 15.0 | 4680 | 0.1697 | 0.6931 |
|
68 |
+
| 0.1793 | 16.0 | 4992 | 0.1710 | 0.6643 |
|
69 |
+
| 0.179 | 17.0 | 5304 | 0.1728 | 0.6534 |
|
70 |
+
| 0.1784 | 18.0 | 5616 | 0.1712 | 0.6498 |
|
71 |
+
| 0.1784 | 19.0 | 5928 | 0.1726 | 0.6065 |
|
72 |
+
| 0.1778 | 20.0 | 6240 | 0.1720 | 0.6679 |
|
73 |
+
| 0.1761 | 21.0 | 6552 | 0.1724 | 0.6606 |
|
74 |
+
| 0.1761 | 22.0 | 6864 | 0.1792 | 0.6534 |
|
75 |
+
| 0.1761 | 23.0 | 7176 | 0.1700 | 0.6715 |
|
76 |
+
| 0.1761 | 24.0 | 7488 | 0.1698 | 0.6679 |
|
77 |
+
| 0.1748 | 25.0 | 7800 | 0.1697 | 0.6968 |
|
78 |
+
| 0.1744 | 26.0 | 8112 | 0.1729 | 0.6859 |
|
79 |
+
| 0.1744 | 27.0 | 8424 | 0.1702 | 0.6570 |
|
80 |
+
| 0.1736 | 28.0 | 8736 | 0.1708 | 0.6931 |
|
81 |
+
| 0.1723 | 29.0 | 9048 | 0.1698 | 0.6787 |
|
82 |
+
| 0.1723 | 30.0 | 9360 | 0.1799 | 0.6462 |
|
83 |
+
| 0.1735 | 31.0 | 9672 | 0.1727 | 0.6751 |
|
84 |
+
| 0.1735 | 32.0 | 9984 | 0.1732 | 0.6498 |
|
85 |
+
| 0.1722 | 33.0 | 10296 | 0.1702 | 0.6751 |
|
86 |
+
| 0.1709 | 34.0 | 10608 | 0.1707 | 0.6968 |
|
87 |
+
| 0.1709 | 35.0 | 10920 | 0.1714 | 0.6968 |
|
88 |
+
| 0.1697 | 36.0 | 11232 | 0.1712 | 0.6751 |
|
89 |
+
| 0.1696 | 37.0 | 11544 | 0.1788 | 0.6570 |
|
90 |
+
| 0.1696 | 38.0 | 11856 | 0.1703 | 0.6787 |
|
91 |
+
| 0.1697 | 39.0 | 12168 | 0.1735 | 0.6751 |
|
92 |
+
| 0.1697 | 40.0 | 12480 | 0.1740 | 0.6787 |
|
93 |
+
| 0.1683 | 41.0 | 12792 | 0.1710 | 0.6895 |
|
94 |
+
| 0.1688 | 42.0 | 13104 | 0.1724 | 0.7076 |
|
95 |
+
| 0.1688 | 43.0 | 13416 | 0.1718 | 0.7004 |
|
96 |
+
| 0.1679 | 44.0 | 13728 | 0.1736 | 0.7040 |
|
97 |
+
| 0.1681 | 45.0 | 14040 | 0.1720 | 0.7040 |
|
98 |
+
| 0.1681 | 46.0 | 14352 | 0.1717 | 0.7076 |
|
99 |
+
| 0.1664 | 47.0 | 14664 | 0.1710 | 0.6895 |
|
100 |
+
| 0.1664 | 48.0 | 14976 | 0.1766 | 0.6895 |
|
101 |
+
| 0.1662 | 49.0 | 15288 | 0.1729 | 0.7040 |
|
102 |
+
| 0.1655 | 50.0 | 15600 | 0.1704 | 0.7076 |
|
103 |
+
| 0.1655 | 51.0 | 15912 | 0.1711 | 0.7184 |
|
104 |
+
| 0.1665 | 52.0 | 16224 | 0.1709 | 0.7040 |
|
105 |
+
| 0.1651 | 53.0 | 16536 | 0.1711 | 0.6931 |
|
106 |
+
| 0.1651 | 54.0 | 16848 | 0.1736 | 0.7040 |
|
107 |
+
| 0.1646 | 55.0 | 17160 | 0.1712 | 0.7112 |
|
108 |
+
| 0.1646 | 56.0 | 17472 | 0.1740 | 0.7076 |
|
109 |
+
| 0.1647 | 57.0 | 17784 | 0.1723 | 0.7076 |
|
110 |
+
| 0.1642 | 58.0 | 18096 | 0.1715 | 0.7004 |
|
111 |
+
| 0.1642 | 59.0 | 18408 | 0.1727 | 0.7076 |
|
112 |
+
| 0.1643 | 60.0 | 18720 | 0.1724 | 0.7112 |
|
113 |
+
|
114 |
+
|
115 |
+
### Framework versions
|
116 |
+
|
117 |
+
- Transformers 4.26.1
|
118 |
+
- Pytorch 2.0.1+cu118
|
119 |
+
- Datasets 2.12.0
|
120 |
+
- Tokenizers 0.13.3
|