logs_rand / README.md
djsull's picture
djsull/ner_insurence_roberta
d36c6f3 verified
metadata
base_model: klue/roberta-small
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: logs_rand
    results: []

logs_rand

This model is a fine-tuned version of klue/roberta-small on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0024
  • Precision: 0.8742
  • Recall: 0.8871
  • F1: 0.8806
  • Accuracy: 0.9992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 57 0.0067 0.6685 0.6276 0.6474 0.9980
No log 2.0 114 0.0035 0.8286 0.8312 0.8299 0.9989
No log 3.0 171 0.0028 0.8690 0.8745 0.8717 0.9991
No log 4.0 228 0.0026 0.8693 0.8840 0.8766 0.9992
No log 5.0 285 0.0024 0.8742 0.8871 0.8806 0.9992

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.0.1
  • Datasets 2.19.1
  • Tokenizers 0.19.1