|
--- |
|
base_model: FacebookAI/xlm-roberta-large |
|
datasets: |
|
- sentence-transformers/stsb |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:5749 |
|
- loss:MatryoshkaLoss |
|
- loss:CoSENTLoss |
|
widget: |
|
- source_sentence: A chef is preparing some food. |
|
sentences: |
|
- Five birds stand on the snow. |
|
- A chef prepared a meal. |
|
- There is no 'still' that is not relative to some other object. |
|
- source_sentence: A woman is adding oil on fishes. |
|
sentences: |
|
- Large cruise ship floating on the water. |
|
- It refers to the maximum f-stop (which is defined as the ratio of focal length |
|
to effective aperture diameter). |
|
- The woman is cutting potatoes. |
|
- source_sentence: The player shoots the winning points. |
|
sentences: |
|
- Minimum wage laws hurt the least skilled, least productive the most. |
|
- The basketball player is about to score points for his team. |
|
- Three televisions, on on the floor, the other two on a box. |
|
- source_sentence: Stars form in star-formation regions, which itself develop from |
|
molecular clouds. |
|
sentences: |
|
- Although I believe Searle is mistaken, I don't think you have found the problem. |
|
- It may be possible for a solar system like ours to exist outside of a galaxy. |
|
- A blond-haired child performing on the trumpet in front of a house while his younger |
|
brother watches. |
|
- source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen |
|
consort, the King has always been the sovereign. |
|
sentences: |
|
- At first, I thought this is a bit of a tricky question. |
|
- A man plays the guitar. |
|
- There is a very good reason not to refer to the Queen's spouse as "King" - because |
|
they aren't the King. |
|
model-index: |
|
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 768 |
|
type: sts-dev-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: -0.038123417655342585 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: -0.030855987437062582 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: -0.0742298464837288 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: -0.016119009479880368 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: -0.053239384921975864 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: -0.03860610142560432 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: .nan |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: .nan |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 512 |
|
type: sts-dev-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: -0.040766255073950965 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: -0.028106086435826655 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: -0.076050553000047 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: -0.014573222092867504 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: -0.06110575151055097 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: -0.04818501881621991 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: .nan |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: .nan |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 256 |
|
type: sts-dev-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: -0.044210895435818166 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: -0.03253407490039325 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: -0.0529355152933442 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: -0.0338167301189937 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.0887169006335579 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.06886250477710897 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: .nan |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: .nan |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 128 |
|
type: sts-dev-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: -0.05321620243744594 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: -0.026531903856252148 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: -0.06064347235216407 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: -0.0270947004666721 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.07199088437564892 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.05552894816506978 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: .nan |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: .nan |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 64 |
|
type: sts-dev-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: -0.046922199302745354 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: -0.027530540631984835 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: -0.04930495975336398 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: -0.02287953412697089 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.05851507366090909 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.044913605667507114 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: .nan |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: .nan |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.0005203243269627229 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.007914891421418472 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: -0.008479099839233263 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.0002449834909380018 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.015253799995136243 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: -0.002544651953260673 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: .nan |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: .nan |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: -0.000985791968546407 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.009210170664121263 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: -0.010968197464829785 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.0006366521814203481 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.030903954394043587 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.0214169911509498 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: .nan |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: .nan |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: -0.008347426706014351 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.008133437696668973 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: -0.01284332508912676 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.006207692348050752 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: -0.10411841010392278 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: -0.10441611480429308 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: .nan |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: .nan |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: -0.007293947286825709 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.012461130559236479 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: -0.013785631605643068 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.008355374230034162 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: -0.07790382803601184 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: -0.08277939304968172 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: .nan |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: .nan |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: .nan |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: .nan |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: -0.012731573411777072 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.003453137865023755 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: -0.013710254571378023 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.0028389826642085166 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: -0.04900795414419644 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: -0.05520642056907742 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: .nan |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: .nan |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on FacebookAI/xlm-roberta-large |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("dipteshkanojia/xlm-roberta-large-sts-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.', |
|
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.', |
|
'A man plays the guitar.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
| pearson_manhattan | -0.0381 | |
|
| spearman_manhattan | -0.0309 | |
|
| pearson_euclidean | -0.0742 | |
|
| spearman_euclidean | -0.0161 | |
|
| pearson_dot | -0.0532 | |
|
| spearman_dot | -0.0386 | |
|
| pearson_max | nan | |
|
| spearman_max | nan | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
| pearson_manhattan | -0.0408 | |
|
| spearman_manhattan | -0.0281 | |
|
| pearson_euclidean | -0.0761 | |
|
| spearman_euclidean | -0.0146 | |
|
| pearson_dot | -0.0611 | |
|
| spearman_dot | -0.0482 | |
|
| pearson_max | nan | |
|
| spearman_max | nan | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
| pearson_manhattan | -0.0442 | |
|
| spearman_manhattan | -0.0325 | |
|
| pearson_euclidean | -0.0529 | |
|
| spearman_euclidean | -0.0338 | |
|
| pearson_dot | 0.0887 | |
|
| spearman_dot | 0.0689 | |
|
| pearson_max | nan | |
|
| spearman_max | nan | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
| pearson_manhattan | -0.0532 | |
|
| spearman_manhattan | -0.0265 | |
|
| pearson_euclidean | -0.0606 | |
|
| spearman_euclidean | -0.0271 | |
|
| pearson_dot | 0.072 | |
|
| spearman_dot | 0.0555 | |
|
| pearson_max | nan | |
|
| spearman_max | nan | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
| pearson_manhattan | -0.0469 | |
|
| spearman_manhattan | -0.0275 | |
|
| pearson_euclidean | -0.0493 | |
|
| spearman_euclidean | -0.0229 | |
|
| pearson_dot | 0.0585 | |
|
| spearman_dot | 0.0449 | |
|
| pearson_max | nan | |
|
| spearman_max | nan | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
| pearson_manhattan | 0.0005 | |
|
| spearman_manhattan | 0.0079 | |
|
| pearson_euclidean | -0.0085 | |
|
| spearman_euclidean | 0.0002 | |
|
| pearson_dot | 0.0153 | |
|
| spearman_dot | -0.0025 | |
|
| pearson_max | nan | |
|
| spearman_max | nan | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
| pearson_manhattan | -0.001 | |
|
| spearman_manhattan | 0.0092 | |
|
| pearson_euclidean | -0.011 | |
|
| spearman_euclidean | 0.0006 | |
|
| pearson_dot | 0.0309 | |
|
| spearman_dot | 0.0214 | |
|
| pearson_max | nan | |
|
| spearman_max | nan | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
| pearson_manhattan | -0.0083 | |
|
| spearman_manhattan | 0.0081 | |
|
| pearson_euclidean | -0.0128 | |
|
| spearman_euclidean | 0.0062 | |
|
| pearson_dot | -0.1041 | |
|
| spearman_dot | -0.1044 | |
|
| pearson_max | nan | |
|
| spearman_max | nan | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
| pearson_manhattan | -0.0073 | |
|
| spearman_manhattan | 0.0125 | |
|
| pearson_euclidean | -0.0138 | |
|
| spearman_euclidean | 0.0084 | |
|
| pearson_dot | -0.0779 | |
|
| spearman_dot | -0.0828 | |
|
| pearson_max | nan | |
|
| spearman_max | nan | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:--------| |
|
| pearson_cosine | nan | |
|
| **spearman_cosine** | **nan** | |
|
| pearson_manhattan | -0.0127 | |
|
| spearman_manhattan | 0.0035 | |
|
| pearson_euclidean | -0.0137 | |
|
| spearman_euclidean | 0.0028 | |
|
| pearson_dot | -0.049 | |
|
| spearman_dot | -0.0552 | |
|
| pearson_max | nan | |
|
| spearman_max | nan | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/stsb |
|
|
|
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 5,749 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 11.08 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 11.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------| |
|
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> | |
|
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> | |
|
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/stsb |
|
|
|
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 16.55 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.5 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------|:------------------------------------------------------|:------------------| |
|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> | |
|
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> | |
|
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 6 |
|
- `per_device_eval_batch_size`: 6 |
|
- `num_train_epochs`: 8 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 6 |
|
- `per_device_eval_batch_size`: 6 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 8 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 1.0417 | 500 | 21.1353 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - | |
|
| 2.0833 | 1000 | 20.7941 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - | |
|
| 3.125 | 1500 | 20.7823 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - | |
|
| 4.1667 | 2000 | 20.781 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - | |
|
| 5.2083 | 2500 | 20.7707 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - | |
|
| 6.25 | 3000 | 20.7661 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - | |
|
| 7.2917 | 3500 | 20.7719 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - | |
|
| 8.0 | 3840 | - | - | - | - | - | - | - | nan | nan | nan | nan | nan | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.9.19 |
|
- Sentence Transformers: 3.1.0.dev0 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.4.1+cu121 |
|
- Accelerate: 0.34.2 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |