din0s's picture
update model card README.md
779845c
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - ccmatrix
metrics:
  - bleu
model-index:
  - name: t5-small-finetuned-en-to-it-b32
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: ccmatrix
          type: ccmatrix
          config: en-it
          split: train[3000:12000]
          args: en-it
        metrics:
          - name: Bleu
            type: bleu
            value: 9.6816

t5-small-finetuned-en-to-it-b32

This model is a fine-tuned version of t5-small on the ccmatrix dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1496
  • Bleu: 9.6816
  • Gen Len: 56.5347

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 282 2.9409 2.6764 69.2487
3.3809 2.0 564 2.8277 2.4974 87.428
3.3809 3.0 846 2.7483 2.6851 89.7887
3.1255 4.0 1128 2.6831 3.1801 85.6927
3.1255 5.0 1410 2.6293 3.6949 79.9467
2.9965 6.0 1692 2.5809 4.0149 76.852
2.9965 7.0 1974 2.5403 4.3463 74.6487
2.9002 8.0 2256 2.5033 4.838 72.6053
2.8229 9.0 2538 2.4694 5.2829 67.984
2.8229 10.0 2820 2.4421 5.4964 68.986
2.76 11.0 3102 2.4135 5.8118 66.528
2.76 12.0 3384 2.3897 6.1966 65.052
2.7051 13.0 3666 2.3667 6.452 64.2273
2.7051 14.0 3948 2.3465 6.6428 63.516
2.6568 15.0 4230 2.3265 6.9467 61.8673
2.6183 16.0 4512 2.3101 7.2029 60.7393
2.6183 17.0 4794 2.2954 7.4982 60.0327
2.5757 18.0 5076 2.2799 7.7555 59.968
2.5757 19.0 5358 2.2660 7.8406 60.0307
2.5534 20.0 5640 2.2558 8.0679 59.0793
2.5534 21.0 5922 2.2426 8.3325 58.5367
2.5159 22.0 6204 2.2324 8.3538 58.6893
2.5159 23.0 6486 2.2217 8.5867 57.7627
2.4983 24.0 6768 2.2135 8.8324 56.7367
2.4791 25.0 7050 2.2052 8.8113 57.4373
2.4791 26.0 7332 2.1981 9.0909 57.0173
2.4529 27.0 7614 2.1908 9.0056 57.802
2.4529 28.0 7896 2.1856 9.2696 56.9773
2.4395 29.0 8178 2.1780 9.2824 57.0007
2.4395 30.0 8460 2.1722 9.2106 56.9893
2.4277 31.0 8742 2.1685 9.4668 56.406
2.4181 32.0 9024 2.1646 9.4992 56.2327
2.4181 33.0 9306 2.1616 9.5054 56.3033
2.4071 34.0 9588 2.1578 9.5093 56.548
2.4071 35.0 9870 2.1554 9.5227 56.7807
2.3991 36.0 10152 2.1532 9.5762 56.756
2.3991 37.0 10434 2.1518 9.6659 56.5913
2.3955 38.0 10716 2.1506 9.7199 56.5753
2.3955 39.0 10998 2.1498 9.6715 56.558
2.3913 40.0 11280 2.1496 9.6816 56.5347

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1
  • Datasets 2.5.1
  • Tokenizers 0.11.0