din0s's picture
update model card README.md
3b5fda7
metadata
tags:
  - generated_from_trainer
datasets:
  - ccmatrix
metrics:
  - bleu
model-index:
  - name: t5-small_de-finetuned-en-to-it
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: ccmatrix
          type: ccmatrix
          config: en-it
          split: train[3000:12000]
          args: en-it
        metrics:
          - name: Bleu
            type: bleu
            value: 6.7338

t5-small_de-finetuned-en-to-it

This model is a fine-tuned version of din0s/t5-small-finetuned-en-to-de on the ccmatrix dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3480
  • Bleu: 6.7338
  • Gen Len: 61.3273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 96
  • eval_batch_size: 96
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Bleu Gen Len
No log 1.0 94 3.1064 2.9057 47.5067
No log 2.0 188 2.9769 2.7484 76.9273
No log 3.0 282 2.9015 3.0624 79.8873
No log 4.0 376 2.8444 3.2959 78.276
No log 5.0 470 2.7989 3.6694 74.6013
3.3505 6.0 564 2.7564 3.8098 74.3247
3.3505 7.0 658 2.7212 3.9596 72.554
3.3505 8.0 752 2.6886 4.2231 70.7673
3.3505 9.0 846 2.6572 4.1466 72.0113
3.3505 10.0 940 2.6294 4.2696 71.1647
3.0254 11.0 1034 2.6064 4.6375 67.7707
3.0254 12.0 1128 2.5838 4.7208 68.6707
3.0254 13.0 1222 2.5614 4.9191 68.5767
3.0254 14.0 1316 2.5427 4.9837 66.3867
3.0254 15.0 1410 2.5241 5.1011 66.7667
2.8789 16.0 1504 2.5093 5.283 64.944
2.8789 17.0 1598 2.4919 5.3205 65.738
2.8789 18.0 1692 2.4788 5.3046 65.3207
2.8789 19.0 1786 2.4651 5.5282 64.9407
2.8789 20.0 1880 2.4532 5.6745 63.0873
2.8789 21.0 1974 2.4419 5.7073 63.4973
2.7782 22.0 2068 2.4308 5.8513 62.8813
2.7782 23.0 2162 2.4209 5.8267 64.1033
2.7782 24.0 2256 2.4124 5.8534 64.2993
2.7782 25.0 2350 2.4037 6.0406 63.8313
2.7782 26.0 2444 2.3964 6.1517 63.4213
2.7116 27.0 2538 2.3897 6.2175 63.0573
2.7116 28.0 2632 2.3836 6.2551 62.876
2.7116 29.0 2726 2.3777 6.4412 62.4167
2.7116 30.0 2820 2.3717 6.4604 62.1087
2.7116 31.0 2914 2.3673 6.5471 62.1373
2.6662 32.0 3008 2.3634 6.5296 62.2533
2.6662 33.0 3102 2.3596 6.6623 61.276
2.6662 34.0 3196 2.3564 6.6591 61.392
2.6662 35.0 3290 2.3539 6.7201 61.0827
2.6662 36.0 3384 2.3516 6.675 61.3173
2.6662 37.0 3478 2.3500 6.6894 61.3507
2.6411 38.0 3572 2.3488 6.6539 61.5253
2.6411 39.0 3666 2.3482 6.7135 61.3733
2.6411 40.0 3760 2.3480 6.7338 61.3273

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1
  • Datasets 2.5.1
  • Tokenizers 0.11.0