kamilakesbi's picture
End of training
ae39d2d verified
|
raw
history blame
2.14 kB
metadata
license: mit
base_model: pyannote/segmentation-3.0
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
datasets:
  - diarizers-community/callhome
model-index:
  - name: speaker-segmentation-fine-tuned-callhome-jpn
    results: []

speaker-segmentation-fine-tuned-callhome-jpn

This model is a fine-tuned version of pyannote/segmentation-3.0 on the diarizers-community/callhome jpn dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5146
  • Der: 0.1869
  • False Alarm: 0.0933
  • Missed Detection: 0.0709
  • Confusion: 0.0227

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5.0

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.6043 1.0 340 0.5075 0.1789 0.0682 0.0789 0.0318
0.5766 2.0 680 0.5207 0.1951 0.1012 0.0708 0.0230
0.5345 3.0 1020 0.5011 0.1798 0.0852 0.0716 0.0231
0.518 4.0 1360 0.5344 0.1934 0.1009 0.0700 0.0225
0.5147 5.0 1700 0.5146 0.1869 0.0933 0.0709 0.0227

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1