|
--- |
|
license: apache-2.0 |
|
base_model: facebook/bart-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-base-finetuned-CNN-DailyNews |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-finetuned-CNN-DailyNews |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8682 |
|
- Rouge1: 0.184 |
|
- Rouge2: 0.1067 |
|
- Rougel: 0.1628 |
|
- Rougelsum: 0.1718 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5.6e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 2.6113 | 1.0 | 63 | 1.9753 | 0.1612 | 0.092 | 0.146 | 0.1524 | |
|
| 2.0604 | 2.0 | 126 | 1.8843 | 0.1922 | 0.1126 | 0.1709 | 0.1824 | |
|
| 1.7829 | 3.0 | 189 | 1.8400 | 0.1874 | 0.1056 | 0.1672 | 0.1754 | |
|
| 1.6337 | 4.0 | 252 | 1.8325 | 0.1878 | 0.1079 | 0.1664 | 0.176 | |
|
| 1.4657 | 5.0 | 315 | 1.8439 | 0.1839 | 0.1057 | 0.1651 | 0.1719 | |
|
| 1.3926 | 6.0 | 378 | 1.8445 | 0.1868 | 0.1049 | 0.1657 | 0.1752 | |
|
| 1.2903 | 7.0 | 441 | 1.8545 | 0.1878 | 0.1072 | 0.1663 | 0.1753 | |
|
| 1.2512 | 8.0 | 504 | 1.8682 | 0.184 | 0.1067 | 0.1628 | 0.1718 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|