|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: flanT5-description-generation |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# flanT5-description-generation |
|
|
|
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3688 |
|
- Rouge1: 6.3055 |
|
- Rouge2: 5.5351 |
|
- Rougel: 5.9301 |
|
- Rougelsum: 5.9371 |
|
- Gen Len: 4.6041 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 1.0 | 99 | 3.9741 | 7.1174 | 6.3701 | 6.7345 | 6.7347 | 2.4264 | |
|
| No log | 2.0 | 198 | 1.6340 | 7.0189 | 6.2738 | 6.6359 | 6.6379 | 2.6142 | |
|
| No log | 3.0 | 297 | 0.7071 | 6.887 | 6.1128 | 6.512 | 6.515 | 3.0406 | |
|
| No log | 4.0 | 396 | 0.4279 | 6.0645 | 5.1995 | 5.6723 | 5.6926 | 5.5787 | |
|
| No log | 5.0 | 495 | 0.3688 | 6.3055 | 5.5351 | 5.9301 | 5.9371 | 4.6041 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.1 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |
|
|