metadata
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: openai/whisper-large-v2
datasets:
- audiofolder
model-index:
- name: large-v2-multiple-bg-v1
results: []
large-v2-multiple-bg-v1
This model is a fine-tuned version of openai/whisper-large-v2 on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.8192
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7975 | 17.2414 | 500 | 1.7851 |
1.4044 | 34.4828 | 1000 | 1.3945 |
1.0932 | 51.7241 | 1500 | 1.0965 |
0.9793 | 68.9655 | 2000 | 0.9987 |
0.9105 | 86.2069 | 2500 | 0.9390 |
0.8601 | 103.4483 | 3000 | 0.8936 |
0.8238 | 120.6897 | 3500 | 0.8600 |
0.7935 | 137.9310 | 4000 | 0.8370 |
0.7834 | 155.1724 | 4500 | 0.8236 |
0.7751 | 172.4138 | 5000 | 0.8192 |
Framework versions
- PEFT 0.10.0
- Transformers 4.41.0.dev0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1