devanshrj's picture
End of training
44bc811 verified
|
raw
history blame
1.97 kB
metadata
license: mit
base_model: roberta-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: roberta-base_gpt-4o-2024-05-13_gpt-4o-mini-2024-07-18_20240913_044355
    results: []

roberta-base_gpt-4o-2024-05-13_gpt-4o-mini-2024-07-18_20240913_044355

This model is a fine-tuned version of roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4503
  • Accuracy: 0.8026
  • F1: 0.8832
  • Precision: 0.8292
  • Recall: 0.9448

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 420
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.4781 1.0 871 0.4503 0.8026 0.8832 0.8292 0.9448
0.4526 2.0 1742 0.4536 0.8048 0.8822 0.8434 0.9248
0.424 3.0 2613 0.4529 0.8052 0.8837 0.8362 0.9370
0.3789 4.0 3484 0.4970 0.8029 0.8826 0.8336 0.9379
0.3275 5.0 4355 0.5587 0.7945 0.8777 0.8286 0.9330

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1