Upload Exam_model.ipynb
Browse files- Exam_model.ipynb +303 -0
Exam_model.ipynb
ADDED
@@ -0,0 +1,303 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "markdown",
|
21 |
+
"source": [
|
22 |
+
"#Вариант 1"
|
23 |
+
],
|
24 |
+
"metadata": {
|
25 |
+
"id": "SL2oOSlhzjyk"
|
26 |
+
}
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"cell_type": "code",
|
30 |
+
"execution_count": 13,
|
31 |
+
"metadata": {
|
32 |
+
"id": "XV7lXxUbMHgN"
|
33 |
+
},
|
34 |
+
"outputs": [],
|
35 |
+
"source": [
|
36 |
+
"import numpy as np\n",
|
37 |
+
"from tensorflow import keras\n",
|
38 |
+
"from tensorflow.keras.datasets import mnist\n",
|
39 |
+
"from tensorflow.keras.layers import Input, Conv2D, MaxPool2D, Dense, Flatten, Dropout"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"cell_type": "code",
|
44 |
+
"source": [
|
45 |
+
"(x_train, y_train), (x_test, y_test) = mnist.load_data()\n",
|
46 |
+
"x_train = x_train/255\n",
|
47 |
+
"x_test = x_test/255\n",
|
48 |
+
"y_train_1 = keras.utils.to_categorical(y_train, 10)\n",
|
49 |
+
"y_test_1 = keras.utils.to_categorical(y_test, 10)\n",
|
50 |
+
"x_test.shape"
|
51 |
+
],
|
52 |
+
"metadata": {
|
53 |
+
"colab": {
|
54 |
+
"base_uri": "https://localhost:8080/"
|
55 |
+
},
|
56 |
+
"id": "yMSQpMAqMlKR",
|
57 |
+
"outputId": "a45d7422-1051-420a-f38f-994ab5fa9857"
|
58 |
+
},
|
59 |
+
"execution_count": 32,
|
60 |
+
"outputs": [
|
61 |
+
{
|
62 |
+
"output_type": "execute_result",
|
63 |
+
"data": {
|
64 |
+
"text/plain": [
|
65 |
+
"(10000, 28, 28)"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
"metadata": {},
|
69 |
+
"execution_count": 32
|
70 |
+
}
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"source": [
|
76 |
+
"input = Input((28, 28, 1))\n",
|
77 |
+
"x = Conv2D(32, 3, padding='same', activation='relu')(input)\n",
|
78 |
+
"x = MaxPool2D(strides=2)(x)\n",
|
79 |
+
"x = Conv2D(64, 3, padding='same', activation='relu')(x)\n",
|
80 |
+
"x = MaxPool2D(strides=2)(x)\n",
|
81 |
+
"x = Flatten()(x)\n",
|
82 |
+
"x = Dense(128, activation='relu')(x)\n",
|
83 |
+
"x = Dropout(0.6)(x)\n",
|
84 |
+
"x = Dense(64, activation='relu')(x)\n",
|
85 |
+
"x = Dense(32, activation='relu')(x)\n",
|
86 |
+
"x = Dropout(0.2)(x)\n",
|
87 |
+
"output = Dense(10, activation='softmax')(x)"
|
88 |
+
],
|
89 |
+
"metadata": {
|
90 |
+
"id": "3qKGxrB7bCb0"
|
91 |
+
},
|
92 |
+
"execution_count": 15,
|
93 |
+
"outputs": []
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"cell_type": "code",
|
97 |
+
"source": [
|
98 |
+
"model = keras.Model(inputs=input, outputs=output, name='mnist_model')\n",
|
99 |
+
"model.summary()"
|
100 |
+
],
|
101 |
+
"metadata": {
|
102 |
+
"colab": {
|
103 |
+
"base_uri": "https://localhost:8080/"
|
104 |
+
},
|
105 |
+
"id": "vgk8Q7RZcAL_",
|
106 |
+
"outputId": "14444c9d-e9e2-42ef-89ac-d604af1ff4ff"
|
107 |
+
},
|
108 |
+
"execution_count": 16,
|
109 |
+
"outputs": [
|
110 |
+
{
|
111 |
+
"output_type": "stream",
|
112 |
+
"name": "stdout",
|
113 |
+
"text": [
|
114 |
+
"Model: \"mnist_model\"\n",
|
115 |
+
"_________________________________________________________________\n",
|
116 |
+
" Layer (type) Output Shape Param # \n",
|
117 |
+
"=================================================================\n",
|
118 |
+
" input_2 (InputLayer) [(None, 28, 28, 1)] 0 \n",
|
119 |
+
" \n",
|
120 |
+
" conv2d_2 (Conv2D) (None, 28, 28, 32) 320 \n",
|
121 |
+
" \n",
|
122 |
+
" max_pooling2d_2 (MaxPooling (None, 14, 14, 32) 0 \n",
|
123 |
+
" 2D) \n",
|
124 |
+
" \n",
|
125 |
+
" conv2d_3 (Conv2D) (None, 14, 14, 64) 18496 \n",
|
126 |
+
" \n",
|
127 |
+
" max_pooling2d_3 (MaxPooling (None, 7, 7, 64) 0 \n",
|
128 |
+
" 2D) \n",
|
129 |
+
" \n",
|
130 |
+
" flatten_1 (Flatten) (None, 3136) 0 \n",
|
131 |
+
" \n",
|
132 |
+
" dense_4 (Dense) (None, 128) 401536 \n",
|
133 |
+
" \n",
|
134 |
+
" dropout_2 (Dropout) (None, 128) 0 \n",
|
135 |
+
" \n",
|
136 |
+
" dense_5 (Dense) (None, 64) 8256 \n",
|
137 |
+
" \n",
|
138 |
+
" dense_6 (Dense) (None, 32) 2080 \n",
|
139 |
+
" \n",
|
140 |
+
" dropout_3 (Dropout) (None, 32) 0 \n",
|
141 |
+
" \n",
|
142 |
+
" dense_7 (Dense) (None, 10) 330 \n",
|
143 |
+
" \n",
|
144 |
+
"=================================================================\n",
|
145 |
+
"Total params: 431,018\n",
|
146 |
+
"Trainable params: 431,018\n",
|
147 |
+
"Non-trainable params: 0\n",
|
148 |
+
"_________________________________________________________________\n"
|
149 |
+
]
|
150 |
+
}
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"source": [
|
156 |
+
"model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])"
|
157 |
+
],
|
158 |
+
"metadata": {
|
159 |
+
"id": "Y3N38Z0Gc5T8"
|
160 |
+
},
|
161 |
+
"execution_count": 17,
|
162 |
+
"outputs": []
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"source": [
|
167 |
+
"model.fit(x_train, y_train_1, batch_size=60, epochs=10, validation_split=0.25)"
|
168 |
+
],
|
169 |
+
"metadata": {
|
170 |
+
"colab": {
|
171 |
+
"base_uri": "https://localhost:8080/"
|
172 |
+
},
|
173 |
+
"id": "ucorYL2FdZ38",
|
174 |
+
"outputId": "9fe73808-2e8f-4a22-dce4-90329d5f9fd2"
|
175 |
+
},
|
176 |
+
"execution_count": 18,
|
177 |
+
"outputs": [
|
178 |
+
{
|
179 |
+
"output_type": "stream",
|
180 |
+
"name": "stdout",
|
181 |
+
"text": [
|
182 |
+
"Epoch 1/10\n",
|
183 |
+
"750/750 [==============================] - 6s 5ms/step - loss: 0.5188 - accuracy: 0.8353 - val_loss: 0.0891 - val_accuracy: 0.9741\n",
|
184 |
+
"Epoch 2/10\n",
|
185 |
+
"750/750 [==============================] - 4s 5ms/step - loss: 0.1744 - accuracy: 0.9531 - val_loss: 0.0657 - val_accuracy: 0.9812\n",
|
186 |
+
"Epoch 3/10\n",
|
187 |
+
"750/750 [==============================] - 4s 6ms/step - loss: 0.1273 - accuracy: 0.9656 - val_loss: 0.0545 - val_accuracy: 0.9847\n",
|
188 |
+
"Epoch 4/10\n",
|
189 |
+
"750/750 [==============================] - 4s 5ms/step - loss: 0.1063 - accuracy: 0.9708 - val_loss: 0.0515 - val_accuracy: 0.9862\n",
|
190 |
+
"Epoch 5/10\n",
|
191 |
+
"750/750 [==============================] - 4s 5ms/step - loss: 0.0904 - accuracy: 0.9750 - val_loss: 0.0499 - val_accuracy: 0.9864\n",
|
192 |
+
"Epoch 6/10\n",
|
193 |
+
"750/750 [==============================] - 5s 7ms/step - loss: 0.0771 - accuracy: 0.9788 - val_loss: 0.0566 - val_accuracy: 0.9858\n",
|
194 |
+
"Epoch 7/10\n",
|
195 |
+
"750/750 [==============================] - 4s 5ms/step - loss: 0.0685 - accuracy: 0.9809 - val_loss: 0.0440 - val_accuracy: 0.9885\n",
|
196 |
+
"Epoch 8/10\n",
|
197 |
+
"750/750 [==============================] - 4s 5ms/step - loss: 0.0618 - accuracy: 0.9828 - val_loss: 0.0432 - val_accuracy: 0.9904\n",
|
198 |
+
"Epoch 9/10\n",
|
199 |
+
"750/750 [==============================] - 4s 6ms/step - loss: 0.0583 - accuracy: 0.9835 - val_loss: 0.0432 - val_accuracy: 0.9902\n",
|
200 |
+
"Epoch 10/10\n",
|
201 |
+
"750/750 [==============================] - 4s 5ms/step - loss: 0.0541 - accuracy: 0.9854 - val_loss: 0.0460 - val_accuracy: 0.9894\n"
|
202 |
+
]
|
203 |
+
},
|
204 |
+
{
|
205 |
+
"output_type": "execute_result",
|
206 |
+
"data": {
|
207 |
+
"text/plain": [
|
208 |
+
"<keras.callbacks.History at 0x7fdc9c11ded0>"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
"metadata": {},
|
212 |
+
"execution_count": 18
|
213 |
+
}
|
214 |
+
]
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"cell_type": "code",
|
218 |
+
"source": [
|
219 |
+
"model.evaluate(x_test, y_test_1)"
|
220 |
+
],
|
221 |
+
"metadata": {
|
222 |
+
"colab": {
|
223 |
+
"base_uri": "https://localhost:8080/"
|
224 |
+
},
|
225 |
+
"id": "nICqRV-ai6Rf",
|
226 |
+
"outputId": "9c411e5b-91fe-4988-c7c7-1e82557be5d1"
|
227 |
+
},
|
228 |
+
"execution_count": 19,
|
229 |
+
"outputs": [
|
230 |
+
{
|
231 |
+
"output_type": "stream",
|
232 |
+
"name": "stdout",
|
233 |
+
"text": [
|
234 |
+
"313/313 [==============================] - 1s 3ms/step - loss: 0.0320 - accuracy: 0.9906\n"
|
235 |
+
]
|
236 |
+
},
|
237 |
+
{
|
238 |
+
"output_type": "execute_result",
|
239 |
+
"data": {
|
240 |
+
"text/plain": [
|
241 |
+
"[0.031986501067876816, 0.9905999898910522]"
|
242 |
+
]
|
243 |
+
},
|
244 |
+
"metadata": {},
|
245 |
+
"execution_count": 19
|
246 |
+
}
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "code",
|
251 |
+
"source": [
|
252 |
+
"from keras.utils import plot_model\n",
|
253 |
+
"\n",
|
254 |
+
"# Основная модель\n",
|
255 |
+
"plot_model(model, dpi=90, show_shapes=True, show_layer_activations=True)"
|
256 |
+
],
|
257 |
+
"metadata": {
|
258 |
+
"colab": {
|
259 |
+
"base_uri": "https://localhost:8080/",
|
260 |
+
"height": 1000
|
261 |
+
},
|
262 |
+
"id": "oK20wJToguyw",
|
263 |
+
"outputId": "5c0bb024-1647-4608-bcd8-77a64544ab22"
|
264 |
+
},
|
265 |
+
"execution_count": 21,
|
266 |
+
"outputs": [
|
267 |
+
{
|
268 |
+
"output_type": "execute_result",
|
269 |
+
"data": {
|
270 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXMAAAS6CAIAAAAnBx4eAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOydeVwT1/r/zyQBQthJ1LCKLCIWLKKIWm/dryxyxVpABEWrVqlSl6tUXNuKbRXcihvaVupS9JYC2lpUsG4vxauVWlxASmUrilAqQiQhSOb3x/w639yQDJNksoDP+y/mZPLMM8+cfJg5M3M+GI7jCAAAgFFYhk4AAIBeCCgLAADMA8oCAADzgLIAAKADcKbZtGmTofcJAAA1GDt2LOM6wNFFoq+//vquXbt0EbkXcOfOnRUrVly8eNHQiTBDZmbmnTt34HD3XDIzM6uqqhgPqxNlsbW1HTdunC4i9xp6TX0uXbpUVVXVa3bnFYQ4goyHhXEWAACYB5QFAADmAWUBAIB5QFkAAGAeUBYAAJjHeJXl6NGjAoGgrKzMUAmsXr3ay8uLx+PZ29uPGDHiyJEjhsrE4KXQkpkzZ2J/c+LECbJdJpOlpaVFR0e7uLgQn37++efkp3l5ee7u7hiGCYXC3bt36ydVioMuFouTk5M9PDzMzc09PDySk5PFYrHGATWLRlBYWDhp0qQNGzYQi3l5eWlpaTKZjFzhxIkTZMFnzpxJd+cZxXiVhXjexoAJFBYWbtu2rbGxsaKiIjQ0ND4+/ujRowbJxOCl0J7XX3/9+vXrdXV10dHRRItIJAoODrawsDh58mRtba2VlZWtrW1ycvJvv/1GrBAREfHo0SNvb+979+4tW7ZMP3lSHPTk5OTPP//80KFDf/755969e3fu3JmcnKxxQM2iPXz4MCUl5a+//rpw4QLZJSIiIrhcbmho6IsXL4iW6Ojourq669evv/766xoWQnsYf/Zu06ZNunikj0EaGhoiIiK6XW369OnyizY2NuHh4dpvnXhGTvs4jECzFBTQOdzR0dETJ05UaJw6dWpCQgK5yOfzjx07hhAaNWrUy5cvyXZvb+/GxkZtMlQLioPu5uYm/2l4eLibm5vGATWLRoIQWrdunXzLu+++27V/Tpw4MTo6mjqUjn6wxnvOojv27dtH58wzJydHfhHHcQzDdJaUYaBZCsbJycnJz89fv369fGNsbGxkZGRRUVFaWpr+UyITk1+UP+gYhrFY//d74XA48ovqBtQsGgXr168/c+ZMbm6uNkEYxEiV5fz580KhEMOwS5cuIYR27tzJ5XJ9fX3T09MDAwN5PF5gYODvv/+emppqamrq6+sbHh5ubW3t4OAwf/7858+fI4QSEhI4HA7xbGh7e/uwYcNYLFZcXNySJUtSUlLOnTuHYdiCBQto5lNTU9PS0jJx4kRd7bBq5Euhqg4IIVWlUFUHhJBCKbKysqytrfXTNTMyMgYPHuzo6KjQfuDAAQcHh02bNt27d6/rt0QiUWJiorOzM5fL9fb2Xrt2rVgspqhJS0tLQkKCq6urlZXV+PHjb9++rVaSCgd95cqVBQUFN27ckEgkV65cOX/+/IoVKzQOqH00BVxcXLy8vDIyMrQJwiSMnwUxdXJVVFSEELp48SKxuGjRIkdHx9LS0vb29pKSEhsbm0WLFuE4Hh0d7ePjU11dLRaLL1y4wOfz3377beIrYWFh8pkMGzYsNjYWx/GxY8dOmTJFrWSSkpJee+21trY27fdLg6sh+VKoqgOuuhSq6oD/bymOHj1qaWmZnZ2tVm4aXA11dnZyudw5c+bIr8Pn84k/8vPzEUIBAQEdHR34/14NxcXFOTs7X7t2rbW1taCgoE+fPrNnz6aoyeTJk/39/cvLy5ubm+fMmcPn81tbW+nvmsJB7+zsjIqKIn84M2fOlMlk9KMpBNQyGupyNYTjeFRUFJfL7ezsJFvgaogW5ubmgwYNMjU19fPzGzp0aHV1NdFubW3t6urK5XInTJiQmJiYnZ399OlTBrdbUFCQnZ19+vRpc3NzBsNqjKo6IO1KERcX19raOmPGDN1k/X/U1tZKJBKhUKj00+Dg4ISEhOLi4pSUFPn2J0+eHD9+fPny5aNHj7a0tJw0aVJiYuKxY8fq6+uRsppUVVUVFBSsWLHCy8vLxsZm6dKlTU1N165do5lk14O+ZMmSkpKS4uLiFy9eXL9+/caNG++//z79vVYIqGU0pQiFQolEUltbq2UcRuhJyiIPm83Gld0u8fX1RQhVVFQwtaEff/xxw4YNly9fdnd3Zyomg6iqA9JBKZiCuFylkOm0tDQvL68tW7YUFxeTjeXl5TiOe3t7ky1+fn44jpeXlyt8nagJsePx8fHEzdcRI0YghJqamuhk2PWgV1ZWZmRkrFq1aujQoTweb9SoUatWrdq3b19NTY0GAbWMpgpLS0v0d3kNjk7edTYgUqkUIcThMLNf+/fvLygoKCwsJI5Zz4LZUjAOxYAlj8c7cuTImDFj5syZ097eTjQSA5/yMkr8rWpY3dTUFCGUm5sbERGhVmJKDzqha/IDQ25ubjKZ7OHDh66uruoG1CYaBURJjeQ+Q089Z1FFcXExh8MZOHAgQgjDMPnHh9QCx/GkpKTq6urs7OyeKCtIrhTa1EEX2NjYIISo70mNHDkyOTn5/v375Av+xI7IPy5YUlKCYRhxrLsyYMAAhNDdu3fpJ0Zx0J2cnBBCT548IVuIi9Cug9B0AmoWrVskEgn6u7wGpzcoi1QqFYlE7e3t+fn5Bw8eXLhwoZ2dHULIycmppKSkrKyso6OjqqpKJBIR6/N4vAcPHjQ2NjY3N6uKWVxcnJqaunXrVjabjcmhp13SFKWlUFUH9L+l+Oabb/Rzb8jFxYXL5RLjIxRs3LgxICCAXBQKhbGxsbt3775+/fqLFy8KCwv37NkTFxfXr18/VVsJCwvbuXPn6dOn29vbJRJJWVlZZ2cnQig0NNTT07OxsVHhKxQH3cfHZ/jw4du3b797965YLL5169b27duDgoJ8fHxURaMIqFm0bqmvrzc3N3d2dtbgu8zD+JgwI0PNaWlpAoEAIWRvb//JJ5/s2LHDzMwMIRQUFITjeGxsLJvNZrPZy5Yti46OtrCw4PP5bDZbKBSuW7dOKpUSQcrKyvz8/MzMzIYMGZKSkhIQEGBiYrJ27dq8vDx7e3tra+u4uDhVCdy6dUtH5VL33pB8Kfr06aOqDjiOqyqFqjrgOC5fiuPHj1taWubk5Ki1O5o9KTdlypSAgADi76ysLOISwNXV9fDhw/KrPXjwgMvlkveGWltb33vvPaFQyOFwHB0dly5d2traStE3GhoaZs2aJRAIOByOh4fHBx98QDyDN23aNIRQ1z2lPuh1dXXz5s1zdXU1MTHp06dPTEzMH3/8QRGNOqAG0XAcP3PmzIgRI+zt7RFCHA7H09MzMjKS/NTPzy84OFh+fQPeGzJSZaFPdHT06NGj9bY57dHdM7gGKQVNZXn99deLiooeP35M3FvNyclhs9nV1dX6SLELMpnM29v79u3bvSnao0ePWCxWbm4uEeTx48dFRUWvv/463HXWHOIUVwMqKiow1RjhXZVu0bgUuubXX38dNWqUo6PjyZMnEULTp08PCQnZsmWL/jPp6OjIyMhwcHCQv9TqBdE2b94cGhpKDFefPHnS0dFx1KhRv/76q/ZZaUZvUBaN8fT0pBBdT09PQyfYSzhx4gRZVfLV26ysrEePHuntJWaSgoKC27dvnzp1qjdF27FjR11dHfke+cyZM8mCy79crk96trIkJSV99913N2/e9PX1LS0tNXQ6hqTHlcLS0vLcuXNSqVTPr7qEhoYeOnTI2tq610TLzc2VyWT5+fkWFhaMpMEIRvqwA022bdu2bds2Q2dhFPTEUrBYrNWrVxs6ix7P9OnTDZ2CEnr2OQsAAMYJKAsAAMwDygIAAPPoZJylpaWFmFcF6MqdO3cQQr2mPlVVVc+fP+81u/MKUlVVpZOXPxh/QmbTpk1cLpf5RAFjhXgEFui5EI8vM4tOzlmCgoLgn5gqLl26NH78eLyHz5hN8uGHH166dAkOd8+FOIKMh4VxFgAAmAeUBQAA5gFlAQCAeUBZAABgHlAWAACYxwDKcuXKFU9PT2KmAk9PT2K+Eh2RlZVFeAazWCwPD49Dhw7pbluAKsDX+RX0dTbYzE/e3t7e3t6Mb10pZmZmXd0/DYVRua9qD/2ZnwhfZ9JVp7W1dfLkyfv27SMWCV9nHo9HzD5Nomf3VX9//5ycHJFI1NTUtGnTJoTQkSNHiI+WLVvG4/EuXLggEony8/PNzMyIqfw0C6hZtLKyss2bNxNz3Mj7DaWnp0+ZMkUkEhGLMpmM9HWGmZ8Yo7Gx0Tjf/tQp2u+1TusmEAiImZ/IuYRjYmI8PT0TEhKIRVNT0z179rS1tcXHxxtw/qoBAwZMnz7dwsLC3t7+ww8/tLGx+fbbb4mPTp06NWXKlAkTJlhYWAQHB//zn/+kM5GKqoCaRfP29l6/fr28BRrB0qVL+/fvHxMTQyxiGEbM/ETMc2oQeqGyGMqr2LBov9f6rBv4OoOvsz4woG3zqVOnvLy8LCwseDzem2++WVlZif62v2KxWMOGDWtvb3/69OmQIUMwDBszZoxSq+AtW7ZwudzAwMBff/01KioqMDBQy4IoNTCmv9faezwjhHRq8wy+zuDrrDaajbPo1LaZYpwlPT39yy+/FIlE1dXVxC+QDG5nZ9fS0kIs1tbWDh06FFdtFbxo0aK+fftu37799OnT06ZNo9hxOuMsqgyM6e+1lh7POG2bZ/B11iwg+DrrD4PYNi9duvSdd96xsLBwdXUdOHBgXV0d0b527dpnz57t27ePWNyxY8fixYuprYKtrKxWrlwZHh6el5enTUrUBsb00bJuurN5Bl9n7aMpBXydu0dvts0nT54MCgqys7MzNTW9fPkyudHRo0e/+eabO3bsEIvFz549+/bbb+Pi4rSxCqYPfQNj+hiVxzP4Or8Kvs5GqiyqYNar+OHDh7NmzRo9evSDBw9evHgxduxY+U+Tk5MbGhoOHTq0d+/eqKgoHo9HWgXLn/XNmjWLkWRI1DUwpoMRejx36+uM4zgjvs7qHqz9+/d/8cUXhYWF8maDFE7MGgTUJhoF4OusOUzZNiOE/vWvf929e1cmkyUmJjo4OJiYmCisEBwcPHTo0NTU1L179y5ZsgRpZBWsAdQGxprttVF5PIOvM/g6GwWM2zZLJJIHDx5UVFQQB/inn36SSCTFxcXkIAvJmjVr/vjjj+HDhxMnsRRWwQxCbWBMf6+18XhGCOnO5hl8ncHXWRO6HWq+cuUK+X9m4MCBly5d0p1tM+kZ3JXAwEAcxxcvXmxlZdW3b99ly5bNmjWLzWYvXbqUTLWzs1MoFJ47d45sUWoVnJKSQuTv4+Pzyy+/UNeHzr0hpQbG9Pca19rjGcdxmjbP4OsMvs5KMXZfZ8PaNj958mTw4MHq3lykRj9P9+utbuDrbCTRwNdZbQz4rPehQ4cWL15sJENi6mJUHs/g66zraODr3ANYu3bt48ePL168ePLkyYULFxo6nR4P+DrrOhr4OquHobyKJRKJi4vLkiVLsrKyeqIPQY/weAZfZ6aiGaevM4YzPYk8TOZODczdDxgVOjqCRn3OAgBADwWUBQAA5gFlAQCAeUBZAABgHp28olZVVfXhhx/qInIvgHgRptfU59KlS3C4ezQ6Gn1n/t5QZmZmZmYmszF7EzKZTCqV9sSb2SUlJe7u7gqv6r18+VImkxEvFgM9FH9//127djEbk3llAXorGIZdvHiRmOwSAKiBcRYAAJgHlAUAAOYBZQEAgHlAWQAAYB5QFgAAmAeUBQAA5gFlAQCAeUBZAABgHlAWAACYB5QFAADmAWUBAIB5QFkAAGAeUBYAAJgHlAUAAOYBZQEAgHlAWQAAYB5QFgAAmAeUBQAA5gFlAQCAeUBZAABgHlAWAACYB5QFAADmAWUBAIB5QFkAAGAeUBYAAJgHlAUAAOYBZQEAgHlAWQAAYB5QFgAAmAeUBQAA5gFlAQCAeTAcxw2dA2Ck7N+//5NPPuns7CQWnz9/bmFhweFwiMXJkyd//fXXhssOMGo4hk4AMF4mTpz43nvvybe0tbURf2AY9sYbbxgiKaBnAOcsABV+fn737t3r2s5ms58+fcrn8/WfEtAjgHEWgIq5c+eampoqNLLZ7H/+858gKwAFoCwAFTExMS9fvlRoZLFYc+bMMUg+QE8BroaAbnjjjTeKiork+4mZmVlTU5OFhYUBswKMHDhnAbohPj7exMSEXORwONOnTwdZAagBZQG6ITIyUiaTkYs4jsfFxRkwH6BHAMoCdIOdnd3kyZPZbDaxyOPxJk+ebNiUAOMHlAXontmzZ2MYhhAyNTWNiYnpercIABSAEVyge9ra2vh8vkQiYbFYFy9efPPNNw2dEWDswDkL0D08Hm/atGkYhgkEgjFjxhg6HaAHoMbT/WVlZfX19bpLBTBmXn/99ZMnT44fP/7KlSuGzgUwDFwud+TIkXTXxmkTHx+vy7QBADBq+vfvT18u1Lsaio+Ppx8aYIT4+HgjKfuOHTu0D9K/f//Dhw9rHwfQM4cPH1ZLK2CcBaDLsmXLDJ0C0GMAZQHowmJBbwHoAn0FAADmAWUBAIB5QFkAAGCeV0hZVq9e7eXlxePx7O3tR4wYceTIEYUVmpubAwIC2Gx2tw+DdRvKgBw9elQgEJSVlRk6ESaRyWRpaWl5eXlZWVkuLi4YhmEY9vnnn5Mr5OXlubu7YxgmFAp3796tn6xUdQOxWJycnOzh4WFubu7h4ZGcnCwWi/UcjaCwsHDSpEkbNmwgW/Ly8tLS0uRfMdUV9G87Gc/tT83w9/fPyckRiURNTU2bNm1CCB05cqTramFhYW+88QYjoRhB3bJ//fXX9vb2paWlOspHSzS469za2jp58uR9+/aRLVZWVra2tjwer7y8XH5Nb2/vxsZGRvKkg6pusGzZMh6Pd+HCBZFIlJ+fb2ZmtmzZMj1HKysr27x588mTJxFC69atk/8oPT19ypQpIpFIrZ09fPiwWs+zvELKMn36dPlFGxub8PDwrqvRURaaoRjBeMre0NAQERGhZRANlGXq1KkJCQnyLXw+/9ixYwihUaNGvXz5kmzXs7Ko6gZubm7yH4WHh7u5uek5GklXZcFx/N1331W3x6qrLK/Q1VBOTo78Io7jxPu7CpCuF9qH6mXs27eP/nk4U+Tk5OTn569fv16hPTY2NjIysqioKC0tTc8pkajqBhiGyd+h53A4dG7YMxuNmvXr1585cyY3N1fLOBQYi7K0t7dv3LjR19eXx+PZ2toOHjz47t27IpEoMTHR2dmZy+V6e3uvXbuW6Nk7d+7kcrm+vr7p6emBgYE8Hi8wMPD333/39vbGMMzU1JSYmqitrW348OFsNnvQoEEKm6upqWlpaZk4cSJCSCKRJCUlOTo6mpiY9OvX79KlS2plLh/K4Jw/f14oFGIYRuyFqkKlpqaampr6+vqGh4dbW1s7ODjMnz//+fPnCKGEhAQOhzNu3DiEUHt7+7Bhw1gsVlxc3JIlS1JSUs6dO4dh2IIFCxBCWVlZ1tbWOu2dCKGMjIzBgwc7Ojp2/ejAgQMODg6bNm3q6i6gtOeoqgbxlZaWloSEBFdXVysrq/Hjx9++fVutPOW7wcqVKwsKCm7cuCGRSK5cuXL+/PkVK1YYMFpXXFxcvLy8MjIytIxDBf3TG52els+ePZvopiKR6I8//oiMjLx69WpcXJyzs/O1a9daW1sLCgr69Okze/ZsYv1FixY5OjqWlpa2t7eXlJTY2NgsWrSovb3d2dk5KCiIDNvS0uLt7S0WixU2l5SU9Nprr7W1teE4HhMTY2dnl5+fLxaLRSLRpEmTur0aUhVKF6hb9qKiIoTQxYsXiUWlhcJxPDo62sfHp7q6WiwWX7hwgc/nv/3228RXwsLCxo4dSwYcNmxYbGwsjuNjx46dMmUK2X706FFLS8vs7Gy1dketq6HOzk4ulztnzhyFdj6fT/yRn5+PEAoICOjo6MDlroZU9RxV1cBxfPLkyf7+/uXl5c3NzXPmzOHz+a2trfT3S74bdHZ2RkVFkT+xmTNnymQy+qGYjYaUXQ3hOB4VFcXlcjs7O2nG6ZFXQ3V1dceOHVuyZElERISFhYWTk9OaNWswDDt+/Pjy5ctHjx5taWk5adKkxMTEY8eOke9bm5ubDxo0yNTU1M/Pb+jQodXV1aampklJSf/973/Pnz9PrJORkREfH8/lcuU3V1BQkJ2dffr0aXNz89ra2hMnTrz//vvBwcFcLtfCwsLMzIx+5vKhmKoG43QtFNFubW3t6urK5XInTJiQmJiYnZ399OlT+mHj4uJaW1tnzJihm6wRQqi2tlYikQiFQlUrBAcHJyQkFBcXp6SkkI1Pnjyh6DlKq1FVVVVQULBixQovLy8bG5ulS5c2NTVdu3aNZp4K3WDJkiUlJSXFxcUvXry4fv36jRs33n//ffp7zWw0VQiFQolEUltbq30opRiFsty7dw/H8WHDhpEtAQEBxMict7c32ejn54fjeHl5edcIbDabkOeFCxf269fv448/RghJpdKvvvpKweXvxx9/3LBhw+XLl93d3RFCZWVlOI4PHz5cg7QVQvUIyEIp4OvrixCqqKjQe0ZUEBdo1Kqdlpbm5eW1ZcuW4uJiooW4YUSn55DVIHY8Pj6euJ89YsQIhFBTUxOdJBW6QWVlZUZGxqpVq4YOHcrj8UaNGrVq1ap9+/bV1NToPxoFlpaW6O8K6wKjcF8lzikUhk6J4Sv5nwHxN/VYKZfLXbVq1erVq3/66adHjx6Fh4fb2NiQn+7fv7+goKCwsJAoK0JIKpUihDSYfrFrqB4NUQc6o9f6h3rAksfjHTlyZMyYMXPmzGlvb0ca9RyiA+Tm5kZERKiVW9duQOia/MCQm5ubTCZ7+PChq6urPqNRQ1RVd3cejOKcZeDAgRiG3bp1q2uj/BNfJSUlGIYNHDiQOlpCQgKfz//oo4/S09PJsS4cx5OSkqqrq7Ozs+W1gPjPcP/+ffrZqgrVoykuLuZwOERtMQzTx5NUNCD+K3R7Q2rkyJHJycn379+vqqpCGvWcAQMGIITu3r1LPzdV3cDJyQkh9OTJE7KFuOBSOgito2h0kEgk6O8K6wKjUBYHB4f4+Phdu3Z9+eWXLS0tMpmsvr5eJpPFxsbu3r37+vXrL168KCws3LNnT1xcXL9+/aijWVhYrFix4sqVK6NGjSIv0YuLi1NTU7du3cpmszE5fHx8Ro8enZqaevXq1RcvXpw7d67bmwKqQjFTCz0ilUpFIlF7e3t+fv7BgwcXLlxoZ2eHEHJyciopKSkrK+vo6KiqqhKJRMT6PB7vwYMHjY2Nzc3NCKFvvvlG1/eGXFxcuFwunZkMN27cGBAQQPwtFArV7TkuLi5hYWE7d+48ffp0e3u7RCIpKyvr7OwMDQ319PRsbGzs+hWKHjV8+PDt27ffvXtXLBbfunVr+/btQUFBPj4+CCFVAZmNRof6+npzc3NnZ2cNvksL+oO9Or031NbW9u9//9vV1ZXD4dja2gYHB9+9e7e1tfW9994TCoUcDsfR0XHp0qXEcP2OHTuIcVbiNlBsbCybzWaz2eSzic+fP+fz+RUVFWR8hRMi+d1//PhxZGRknz59BALBjBkzQkJCWCzWggULVKVKEUoXqFX2tLQ0gUCAELK3t//kk08oChUdHW1hYcHn89lstlAoXLdunVQqJYKUlZX5+fmZmZkNGTIkJSUlICDAxMRk7dq1eXl59vb21tbWcXFxOI4fP37c0tIyJydHrd1R90m5KVOmBAQEkItZWVnEVYCrq6tCnAcPHnC5XOLekNKeQ91tGhoaZs2aJRAIOByOh4fHBx988PLly2nTpiGElO4jRTeoq6ubN2+eq6uriYlJnz59YmJi/vjjD+JbqgIyGw3H8TNnzowYMcLe3h4hxOFwPD09IyMj5Vfw8/MLDg6mfyDgGdzeho7KHh0dPXr0aMbDdou6ypKTk8Nms6urq3WWERUymczb2/v27dvGGVDjaI8ePWKxWLm5ufS/0iPvOhsbFRUVmGqM7QaKxnR2dho6he6ZPn16SEjIli1b9L/pjo6OjIwMBwcH8jrLqAJqE23z5s2hoaHqDlerBSiLEjw9PSnE2NPT09AJvlpkZWU9evRIb28wkxQUFNy+ffvUqVPGGVDjaDt27Kirqztx4gQjaagClOVVJCkp6bvvvrt586avr29paamh0+kGS0vLc+fOSaVSXb9JoEBoaOihQ4esra2NM6Bm0XJzc2UyWX5+voWFBSNpqMIYn18AdM22bdu2bdtm6CzUgMVirV692tBZ9AamT5+unw3BOQsAAMwDygIAAPOAsgAAwDygLAAAMI96I7h37tz58MMPdZMJoJw7d+4ghHpN2VtaWvLy8ogXfIAexJ07d16+fEl/ffWUpb6+Xt0p13oc7e3td+7c8ff3V2uiFt1BvDXTa8oulUrLysqIN4+AHgTxKh/99dVTluDg4MzMTPUy6mlUVVUNGDAgKyvLzc3N0LkghNDcuXMRQr2m7G5ubmvWrCF2CuhBZGZmqnXiDOMsAAAwDygLAADMA8oCAADzgLIAAMA8oCwAADCPTpTlzJkzb731lrOzs5mZGZfLdXBwGDly5MaNGxnfkFKTbXlTcQIejzdgwICoqKgffviB8Rwo+Oyzz+zt7TEMu3Hjhj632zsgXOKjo6ON3yIeGYdLfHJysru7u6mpqY2Njb+/f3p6OvVWdOseT3+SKDqTm8lksnnz5mEYtnz58nv37kkkkr/++uvWrVvr1q0bOnQo/W3RhMK53czMbOLEiTiOd3R01NXVZWVlEdYfsbGx8k7AXamsrEQIVVZWMpLh1atXEUJFRUUaR+hlU/nRnFNOwSXeyC3iceNwiQ8KCjpx4sTz58+fPXtGzJW1d+9e6rTpu8cbeLbKPXv2IIS2bt3a9SPSgo9BKJzbSWUh6ejoIGy3Pv30U4qYr4iyaGn/rvHXaSqLgku8kVvE48bhEm8oZgAAACAASURBVK8Qjc/nT506lTptnLZ7vIFnq9y+fbudnd2yZcu6fvTtt98yuy2kpnM7h8M5cOAAj8fbuXMnrszN65VCS/t3nbrHK3WJN2aLeGQcLvHy0WQy2cuXLwkzBuqfiY7c45lUlpqamsrKylGjRlE8F68fE3hVCASCN998s6Gh4eHDh9rs6ZYtW7hcbmBg4K+//hoVFRUYGNit37gqJ3Zt0iBRWlWKLSrYv6sykDeUe7wql3gKi3hVRaBwiWfQIh4Zk0u8VCqtqalJSkricDhdp8vq+jPRlXs8/dObbk/LCR/c+fPnU6yjHxN4XNnVELkVhNClS5dUZUjzamjRokV9+/bdvn376dOnp02bpspvXP5qSJUTOzV0roZUVZViiwr276oM5Bl3j+/2akipS3y3FvEURVDlEs+gRTxuNC7xz549I77i6+t74cKFbtMmoOMeb8irIWKQmeK0jdrKGzFkAk8nVTrnlt1iZWW1cuXK8PDwXbt2aeM3riXdVpUm2hjIM+geT+0Sr9QiHqnvEs+sRTwyGpd4W1tbwgd+5cqV06ZNU3jTR9XPRBfu8UwqC+G39vjxY1Ur0LfyRlqYwFNTV1dHpsoU2viNa49aVaWJAQ3ku3WJ72oRj9R3iWfQIh4ZmUu8mZmZs7PzvHnzVq5cuXnzZlIvKH4munCPZ3KGbTc3N3d392vXronFYqU9Qz8m8BR0dHQUFRW5uLgQPr5MobHfOCNoVlVqDG4gT3FS2dUiHqlfBAYt4pGxusQPGjRIJpOVl5e7uLhQ/0x04R7P8L2h5OTk5uZmpb5Tb731lpeXlx5M4CnYs2dPU1OTukNr3ULTb1xHTuwUBukab5E0kNe/ezwdl3gFi3ikvks8gxbxyDhc4quqqhTuyRLVcHR07PZnohP3ePpDMjQfrEhMTEQILVq06O7du4T5dmlp6b59++zt7XEcj4uLc3JyunbtmkgkKigoEAgE8iO4Hh4eZJyJEyfKjxES19XE2BvBzz//TLFHZmZm48aNk0gkOI5LpdLy8vK1a9eyWKyYmBjqkSr6I7jy2YaFhdnZ2Z06dUoikYjF4tLSUuKxC/kR3EWLFtnY2JSWlkql0srKSm9vbwZHcJVWlWKLISEhLi4uDQ0Nz549w3E8Ojp66NChra2tEonkxx9/tLa2Jh4nURVB4evHjx+3srKi4/FMcwR37ty58o3kCC6JVColvAHlR3BVFUFpv1J1yEJCQjw8PBoaGhS2SNHfXr58OXz48MGDB5eUlLS1td28edPd3T0oKKizs1NVNIqAmkV7+vTpgAEDrl+/3tbW1tbW9u2339rY2MTGxlL/TMjSmZubMzuCqxNf58LCwhkzZjg5OZmYmHA4HIFAEBgYSPRUPZjAZ2dn+/j4mJubm5iYECd4HA5HKBSGhYXRuXlBR1lSUlKIbH18fH755Rdchd/41q1b+Xw+QkggEGzdulWVEzt1PnTKrqqqFFtUsH9XZSDPuHs8nSfl5F3iaVrEqyoCRb9SeshwjUzdcdW+7sx6zlNEa2trCw4OdnFxMTc3t7S0HDJkSGpqqlgspk6bgI57vFEoS4+G2WdwtUc/ZdebgTwdZelNLvHGHI2Apns8OMYDGmI8BvK9xiXemKOR6Mg9HpQFMEZ6h0u8MUcj0J17PCgLYIwG8r3DJd6YoyEdu8eDYzxgpAby4BKva3TqHg/nLAAAMA8oCwAAzAPKAgAA84CyAADAPBhOe3a1uXPnnj17tuuUS70MY/N1JqYp8vDwMHQizHDnzh0nJ6c+ffoYOhFAPerr6yUSCfmiVreooSx5eXl37tzRMC+g57N169aYmBi1XrcFehO2trbLly+nubIaygK84mAYdvHiRWLySgCgBsZZAABgHlAWAACYB5QFAADmAWUBAIB5QFkAAGAeUBYAAJgHlAUAAOYBZQEAgHlAWQAAYB5QFgAAmAeUBQAA5gFlAQCAeUBZAABgHlAWAACYB5QFAADmAWUBAIB5QFkAAGAeUBYAAJgHlAUAAOYBZQEAgHlAWQAAYB5QFgAAmAeUBQAA5gFlAQCAeUBZAABgHlAWAACYB5QFAADmAWUBAIB5QFkAAGAeUBYAAJiHY+gEAOOlsbGxtbVVvuXJkyePHj0i/jYxMXFxcTFEXkAPAMNx3NA5AEbK/v3733vvPVWfRkdHnzhxQp/5AD0IuBoCVBIZGclms5V+xGKxZs6cqed8gB4EKAugEoFAMGHCBKXiwuPxQkJC9J8S0FMAZQGomDNnDoZhCo0mJiZRUVFmZmYGSQnoEcA4C0DFixcv+Hx+e3u7fCOLxSooKJgwYYKhsgKMHzhnAaiwsLAIDw/ncP7nHqKdnd3YsWMNlRLQIwBlAbohLi5O/sTW1NR09uzZqkZ2AYAAroaAbpBKpQKBQP7Blps3bwYGBhowJcD4gXMWoBtMTU0jIyNNTEyIRWdn5+HDhxs2JcD4AWUBuic2NrazsxMhZGZm9s4773S9WwQACsDVENA9MpmsX79+f/75J0Lo/v37gwcPNnRGgLED5yxA97BYrLi4OITQ4MGDQVYAOvzP3cS8vLw7d+4YKhXAmBGJRAghJyenDz/80NC5AMaIra3t8uXLycX/uRqaO3fu2bNnBw0aZIjEAE34/fffEUIeHh562NatW7f8/Py4XK7uNnHnzh0nJ6c+ffrobhOALqivr5dIJFVVVWSL4iwKwcHBmZmZ+swJ0Ia5c+cihPRzyAoKCiZPnqzTTbi5ua1evZrYKaAHkZmZqXAyC+MsAF10LStAbwKUBQAA5gFlAQCAeUBZAABgHlAWAACY59VSls8++8ze3h7DsBs3biCEjh49KhAIysrKNA64evVqLy8vHo9nb28/YsSII0eOKKzQ3NwcEBDAZrPHjBmjZShG0H6XjQSZTJaWlhYdHe3i4oJhGIZhn3/+OflpXl6eu7s7hmFCoXD37t36SYniCIrF4uTkZA8PD3Nzcw8Pj+TkZLFYrHFAzaIlJye7u7ubmpra2Nj4+/unp6dTbyUvLy8tLU0mk6ldCAJcjvj4+Pj4eLxXc/XqVYRQUVERjuNff/21vb19aWmpxtH8/f1zcnJEIlFTU9OmTZsQQkeOHOm6WlhY2BtvvMFIKAXUPWTa77JO6d+//+HDh7tdrbW1dfLkyfv27SMWraysbG1teTxeeXm5/Gre3t6NjY26yFMpFEdw2bJlPB7vwoULIpEoPz/fzMxs2bJlGgfULFpQUNCJEyeeP3/+7NmzLVu2IIT27t1LnXZ6evqUKVNEIlG3wQ8fPty/f3/5lldaWbRn+vTp8os2Njbh4eFdV6OjLDRDKWA8h6yhoSEiIkLLIDSVZerUqQkJCeQin88/duwYQmjUqFEvX74k2/WsLBRH0M3NTf7T8PBwNzc3jQMyEo3P50+dOpU6bRzH3333XTr9sKuyvFpXQ0zx/Pnzjz/+uKGhIScnR74dx3Gl7wErzMmmFJqhjJZ9+/bROSfXnpycnPz8/PXr18s3xsbGRkZGFhUVpaWl6SEHVYnJL8ofQQzDWKz/+61xOBz5RXUDah9NJpO9fPnSzs6OOm2E0Pr168+cOZObm9ttfAXUU5atW7dyuVxLS0tfX187OzsOh8Pn88ePH+/r62tra2tqahoUFFRbW0usfOrUKS8vLwsLCx6P9+abb1ZWViKEvvjiC3NzcwzD3Nzcfv/99+3bt1taWvbp06ewsFDpFlNTU01NTX19fcPDw62trR0cHObPn//8+XPiU5FIlJiY6OzszOVyvb29165dS3RuVe3ynD9/XigUYhh26dIlhNDOnTu5XK6vr296enpgYCCPxwsMDCSenUcIicXi1atX9+/f39TU1M3NrX///iYmJn379pUPWFNT09LSMnHiRISQRCJJSkpydHQ0MTHp168fsQn6yIdiEPq7rKrsCQkJHA5n3LhxCKH29vZhw4YRLysuWbIkJSXl3LlzGIYtWLAAIZSVlWVtba1Bj+yWjIyMwYMHOzo6KrQfOHDAwcFh06ZN9+7d6/otpV2CogItLS0JCQmurq5WVlbjx4+/ffu2WkkqHMGVK1cWFBTcuHFDIpFcuXLl/PnzK1as0DigNtGkUmlNTU1SUhKHw1m9ejV12gghFxcXLy+vjIwMtbJFSP1xliVLlggEgvLy8vb29tLS0j59+rz55ptlZWVisfju3bsWFharVq0i1kxPT//yyy9FIlF1dTXRNYn227dvm5ubb9y4Ecfxp0+f/utf/6I+ZY2Ojvbx8amurhaLxRcuXODz+W+//TbxUVxcnLOz87Vr11pbWwsKCvr06TN79myKdvx/r4aKiooQQhcvXiQ+WrRokaOjY2lpaXt7e0lJiY2NzaJFi4iPli9fbmdnd/PmzRcvXnzxxRcIof/85z8KeSYlJb322mttbW04jsfExNjZ2eXn54vFYpFINGnSpG6vhlSFokbdqyH6u6yq7GFhYWPHjiUDDhs2LDY2FsfxsWPHTpkyhWw/evSopaVldnY2/dxwGldDnZ2dXC53zpw58o18Pp/4Iz8/HyEUEBDQ0dGB/+/VkKouoaoCkydP9vf3Ly8vb25unjNnDp/Pb21tpb8jCkews7MzKiqK/NHNnDlTJpPRj6YQUONoz549I77i6+t74cKFbtMmiIqK4nK5nZ2dFJEZGGdZsmSJk5MTuRgSEvKPf/yDXBw6dOjMmTO7fmvs2LHBwcHk4tGjRzEMO3To0NSpU6urq6m3GB0dHRQURC4SryfU19c/fvwYw7C0tDTyo48//hjDsOLiYqXtT548wbtTFg8PD/Jb48aNI3P29PScNWsW+ZG9vf2SJUvkkzx//ry7u/vvv/+O43hNTQ2GYZs2bSI/pTPOojRUt2ivLKp2WVXZaSqLZnSrLMQ7b0lJSfKNpLLgOJ6QkIAQIopPKouqrvLkyROlFSDOr7/++mui8ebNmwihs2fP0tyLrkdw8eLFgwYNKi4ufvHixfXr193c3JYuXUozWteA2kSTSCS1tbVfffWVpaWlfBdVmjbB+++/jxCqqqqiCMv8OAuLxZK/L8VisfC/X54+efJkUFCQnZ2dqanp5cuXcbmXquPi4pYtW7Zw4cKFCxe6urqqtUVfX1+EUEVFBXEjwNvbm/zIz88Px/EffvhBaXt5eblaG2Kz2WTOEolEPn+ZTCbvtvPjjz9u2LDh8uXL7u7uCKGysjIcxzWb0lEhlJ6R32UFyLLrNyNFiAthc3NzVSukpaV5eXlt2bKluLiYbFTVVbp2CaICxG7Gx8cT97NHjBiBEGpqaqKTYdcjWFlZmZGRsWrVqqFDh/J4vFGjRq1atWrfvn01NTUaBNQympmZmbOz87x581auXLl582Zy7IKi41laWqK/K08fXY3gPnz4cNasWaNHj37w4MGLFy8UTCRwHBeJRL6+vmvXriUm/qCPVCpFCHE4HGKcSf6XQPxNjGZ1bddmQPSf//zn2bNnf/7557a2tgMHDjQ3N4eFhREf7d+//4svvigsLHR2dpbP0NTUVN2tdA1lPJBlN3QiCP19iJXC4/GIm6Zz5swhbZJUdRVVXYI4drm5ufL/hGfNmtVtYkqPIKFr8gNDbm5uMpns4cOHGgTUJpo8gwYNkslkhLZSdzyi2ur+fHSlLHfv3pXJZImJiQ4ODuTkzCTJycmTJk0qKCh49uzZO++8o1bk4uJiDoczcODAgQMHYhgm/9BXSUkJhmFTp05V2j5w4ECNd2f79u1CoXDSpEn29vZ79uzJzMycMGECjuNJSUnV1dXZ2dmErhMQqn///n368VWFMh7IsmMYpvnTU1pjY2ODEKK+CTVy5Mjk5OT79++T04Wo6iqqusSAAQMQQnfv3qWfGMURdHJyQgg9efKEbKmurkYIdR2EphNQs2hVVVXLli2TbyGq4ejo2G3Hk0gk6O/Kq4G8KmswzqIwgjBs2LDo6Ggcx69fv44QOnTokFgsvn37tqenJ3kRvnPnzj179hB/X7t2jcPhpKamUmwxOjp66NChra2tEonkxx9/tLa2Jp9liIuLc3JyunbtmkgkKigoEAgE5Aiu0nZcnXGWiRMnkjmvWrVq2rRpUqlUPrGff/5ZVUlHjx7t4OBw5coVkUh09uxZoVBIPc5CEYoaZsdZ5HdZVdkXLVpkY2NTWloqlUorKyu9vb2JcZaQkBAXF5eGhoZnz57hOH78+HErK6ucnBz6ueG0R3Dnzp0r3yg/zkIglUoDAgIQQvIjuEq7hKoKhIWF2dnZnTp1SiKRiMXi0tJS4kmZkJAQDw+PhoYGhS1SHMGXL18OHz588ODBJSUlbW1tN2/edHd3DwoK6uzsVBWNIqBm0Z4+fTpgwIDr16+3tbW1tbV9++23NjY2sbGxdDpeXFycubm5bkdwP/vsM2J8wc/Pr6GhISQkhM1ms1isoKAgqVQ6fPhwDMNMTEz+/e9/4zi+ePFiKyurvn37Llu2bNasWWw2e+nSpcHBwQghR0fH+vp6HMfJSVWjoqJUbTQ6OtrCwoLP57PZbKFQuG7dOvIX3tra+t577wmFQg6H4+jouHTpUmIAX1X71q1b+Xw+QkggEPTt21cgECCE7O3tP/nkkx07dhC7RgxbxsbGstlsNptNPN2YlpYmP5eajY3NtGnTzp07p+qoPH78ODIysk+fPgKBYMaMGSEhISwWa8GCBar28datW3pQlrS0NPq7rKrsZWVlfn5+ZmZmQ4YMSUlJCQgIMDExWbt2bV5enr29vbW1NeF8dvz4cUtLS8aVBcfxKVOmBAQEEH9nZWUR43Surq4KX3zw4AGXyyWVRWmXoKhAQ0PDrFmzBAIBh8Px8PD44IMPCGWZNm0aQqjrflEfwbq6unnz5rm6upqYmPTp0ycmJuaPP/6giEYdUINobW1twcHBLi4u5ubmlpaWQ4YMSU1NFYvFdDqen5+f/O0XpfTIZ3Cjo6NHjx5t2Bw++eSTnTt3kotPnjzp37//mjVrDJgSge4OmUHKTkdZcnJy2Gx2t7cUdYRMJvP29r59+3avj0bw6NEjFoulMOTUFSN9BreiogJTTUVFBWF2YyhqamrWrVs3b948skUoFJqbm6v7yGm3u8l04tpi2LKrYvr06SEhIcSbL3qmo6MjIyPDwcGBuNTqxdFINm/eHBoaGhERoe4XjUJZPD09KeTQ09PTsOlxuVwTE5NDhw41NzdLJJKysrIFCxZUVlbSuVkgj5HvZg8iKyvr0aNHenuJmaSgoOD27dunTp3q9dEIduzYUVdXd+LECQ2+axTKQkFSUtJ333138+ZNX1/f0tJSg+TQt2/fU6dO5ebmOjo6WllZTZgwoaWl5fr168RjDr0SYyg7BZaWlufOnZNKpbp4e4CC0NDQQ4cOWVtb9/poCKHc3FyZTJafn29hYaHB143i8QQKtm3btm3bNkNngYKDg4mx51cEIyk7BSwWq+trLwCDTJ8+XZuvG/s5CwAAPRFQFgAAmAeUBQAA5gFlAQCAecDXuWdDvP3Raw7Zzz//7OzsLBQKDZ0IoB719fUtLS2PHz8mWxTvDQmFQmLGMKBH0NzcjBDqNYespKRk0KBB/v7+hk4EUI87d+4ovIKkqCz+/v4Kzs+AMUO8zttrDllmZmZERAQ4xvc4MjMz79y5I98C4ywAADAPKAsAAMwDygIAAPOAsgAAwDygLAAAMA9jypKVlUV6d3///fddV3j06BExLbaLi0tWVpY28TEMMzc3HzRo0Jo1a1pbWzVLWD/u8QppYxjG4/EGDBgQFRX1ww8/aLwtwAgd4wkKCwsnTZq0YcMGVStcvHiRzWaTc/RqGZB+tJ7tGE9M6ajUd2bJkiUIITMzM23im5mZTZw4USaT/fXXXwcPHjQxMRkzZozG0fTmHk+kjeN4R0dHXV1dVlYW4RkSGxsr70OsAcY5DaDG9GjH+LKyss2bN588eRIhtG7dOqXr/PXXX8T8+JWVldoHVCtaz3aM5/P5/v7+GIYpHOPGxsa+ffsGBgYyoizkIjHv/8OHDzWLpjf3eIW0cRzv6OiYMWMGQujTTz/VZqM6UhYt7d81/nqPdownoVCWqKiomJgYmlrQbUC1ovV4x/jExEQcx/ft2yffuHfv3tjYWHt7e2a35ebmhhCqq6tjNix9SOt4pKblO4fDOXDgAI/HI6bX1XmiaqKl/btO3eON1jG+W7766qv+/ftPmDDBINGM2jGeDrNmzeLz+ZmZmW1tbUSLWCw+ePDgypUrFdbU3lKemO6M8PfRj3s8Het4RM/yXSAQvPnmmw0NDep6UKmL0gqo8n5HCCnYvxube3yPcIzvSkVFxddff52SkqJlHC2jGa9jPDWE88uaNWsQQhkZGUTj3r17582bh+P4lClT5K+GNLCUJy8r/vzzz+3bt7NYLPKsWz/u8XSs4/Euzttdr4bIrSCELl26pGG56R0yVRVQ5dCMdzFp1pt7fO9wjEddLl46OjrGjRtHjOIdOnQIaXc1pHE0fTrG6+Su85IlSzgczt69exFCnZ2du3btSkpK6rra0qVL33nnHQsLC1dX14EDB5IXNQEBAQcPHty8efMXX3wxf/789PR0wiWH4MKFCxiGOTk5HTx4cP369cT0v0+ePDl+/Pjy5ctHjx5taWk5adKkxMTEY8eO/fLLL0rb6+vru90L4vaTqampn5/f0KFDCSe6H374ISQkhPj/Nn/+fHt7+8uXLyt8saCgIDs7+/Tp0xT2w/JQeIlqj6rK0KmAPNbW1q6urlwud8KECYmJidnZ2U+fPqX53bi4uNbWVmJcSUtqa2slEomql6GDg4MTEhKKi4sV/plTF6Hrga6qqiooKFixYoWXl5eNjc3SpUubmpquXbumcdqbNm2Kjo5m6pV0jaPZ2toSjvErV66cNm2awutmqvqtUCgkvqXWtnTSp52dnSMiIkpKSq5evZqTk/Paa68prYJmlvLEP39iDv2PPvqIcKLSm3s8tXU8UtPynRBTnbo40zdLp48B3eON3zG+K1evXn3w4MHixYs1+zqz0Xq8Y/z777+PENq7d29qaipxcaQAs5byenOPp7COR2pavnd0dBQVFbm4uBAuwjpCXbN0OhjcPd5oHeOVcvDgwby8PPKBpoULFyKEBgwYoNmc7UxF66mO8f/4xz+GDh36n//8x8LCIigoqOsKzFrK6809Xql1PNLI8n3Pnj1NTU0rVqzQLBOaUJila+z9bkD3eKN1jKfg6NGj8gpFjoycPXtWb9H07xivwyt84vaz0hMWhJCTkxNC6KeffpJIJMXFxfJ3jnft2uXi4hIdHS0UCr/99tvc3NxubyUKhcLY2Njdu3dfv379xYsXhYWFe/bsiYuLe/3115W29+vXT7Od2rJly8CBAxsbGyUSyb179+Lj44n24uLi1NTUrVu3stls+SduyS92dnYS/0I7Ojp+++23devWrVq1KiYmRuF4M46qyvTr18/JyamkpKSsrKyjo6Oqqkr+3JDH4z148KCxsZGYWQohJJVKRSJRe3t7fn7+wYMHFy5caGdnpyqCwte/+eYbpu4Nubi4cLncbgeJNm7cKG8VSFEEVVsJCwvbuXPn6dOn29vbiUtvwjEyNDTU09OzsbFR+33RZzQej/f9998XFRWJxWKxWJydnb179+7Y2Ni2tjbqfosQqq+vNzc3V/uaXV7/tLk31NW7WywWT548mfj01q1br732GnFa5erqmpWVhatpKd+3b1/iPwmGYZ6enunp6QoJ6Mc9Xql1fFNTkyrn7ezsbB8fH3NzcxMTE+KAcTgcoVAYFhZG515Jt9A5ZKoqoMr7HcdxBft3vbnH91zHeBzHz5w5M2LECOKhLQ6H4+npGRkZ2XU1+bs5FNFoBqQZDRzjjR1js47XzyHTm3s8OMYbTzSCnu0Y31Ngyjq+J2I87vHgGK+HaCQ92zG+p8CUdTygJeAYr+toBL3ZMd6oeAWt45FRuseDY7yuo6Fe7xhvbLxq1vHIWN3jwTFe14BjPAAARgcoCwAAzAPKAgAA84CyAACgA+QfbiGfVQcAAFALhSflMFzuBdCysjJ1p+0AXh3Gjx+/c+dOsHMHlMLlckeOHEku/o+yAAAFGIZdvHiRmJ4SAKiBcRYAAJgHlAUAAOYBZQEAgHlAWQAAYB5QFgAAmAeUBQAA5gFlAQCAeUBZAABgHlAWAACYB5QFAADmAWUBAIB5QFkAAGAeUBYAAJgHlAUAAOYBZQEAgHlAWQAAYB5QFgAAmAeUBQAA5gFlAQCAeUBZAABgHlAWAACYB5QFAADmAWUBAIB5QFkAAGAeUBYAAJgHlAUAAOYBZQEAgHlAWQAAYB5QFgAAmAeUBQAA5uEYOgHAeLl+/fq9e/fkW3744Yfy8nLib3t7+7ffftsQeQE9AAzHcUPnABgp33333dtvv83lcjEMQwjhOE78gRCSSCRLly79/PPPDZogYLyAsgAqkUgkAoHgxYsXXT/CMOz69esjR47Uf1ZAjwDGWQCVcLncGTNmmJiYdP3I0dExKChI/ykBPQVQFoCK2NjYzs5OhUYzM7O5c+eSV0YA0BW4GgKo6Ozs7Nu3719//aXQfvfuXV9fX4OkBPQI4JwFoILNZs+aNcvMzEy+ceDAgSArADWgLEA3zJo1SyqVkotmZmbz5s0zYD5AjwCuhoDucXV1ra2tJf7GMOzRo0dubm4GzQgwduCcBeie2bNnkxdEw4YNA1kBugWUBeieuLi49vZ29PddIUOnA/QA4GoIoIW3t3d5eTmLxXry5Enfvn0NnQ5g7MA5C0AL4lRl3LhxICsAHdR4I/Gzzz47e/as7lIBlNLR0YEQUvogrD6RSCQIocePH48bN06bOO3t7RwOh81mM5MWoEeEQuGJEydorqyGspSVlTU3N0dERGiUFaAheXl5CCFjKHtDQ0NERITCsy3qsmvXrnHjxvn7+zOVFaAf7ty5c+PGDfrrqzeLgr+//4cfz6zlZgAAIABJREFUfqheRoB2VFVVIYSMoexxcXGenp5aBsnMzIyIiIBh4B5HZmbmnTt36K8P4ywAXbSXFeDVAZQFAADmAWUBAIB5QFkAAGAeUBYAAJjnFVKW1atXe3l58Xg8e3v7ESNGHDlyRGGF5ubmgIAANps9ZswY6lDJycnu7u6mpqY2Njb+/v7p6ek6y1ptjh49KhAIysrKDJ2ItshksrS0tOjoaBcXFwzDMAyTn3Y3Ly/P3d0dwzChULh79259JlZYWDhp0qQNGzaoWuHixYtsNpu4qad9QPrRVHVLVT0/Ly8vLS1NJpPRzFMtXiFlKSws3LZtW2NjY0VFRWhoaHx8/NGjR+VXsLW1LS4uDgkJ6TbUxYsXP/300z///LO6ujoqKur999/ft2+fzhJXDxzHe8EbGyKRKDg42MLC4uTJk7W1tVZWVra2tsnJyb/99huxQkRExKNHj7y9ve/du7ds2TL9ZPXw4cOUlJS//vrrwoULqor87NmzOXPm0Py5dhtQrWiquqWqnh8REcHlckNDQ5VOdawtOG3i4+Pj4+Ppr29sTJ8+XX7RxsYmPDy862phYWFvvPGGWqH4fP7UqVO1z1ApxlN24kk5LYP079//8OHD3a42derUhIQEcpHP5x87dgwhNGrUqJcvX5Lt3t7ejY2NWqakAQihdevWKf0oKioqJiYGIVRZWal9QLWiqeqW1D3/3XffVfpDUODw4cP9+/fvdjWSV+icJScnR34Rl/O4kIfD6f7pQflQMpns5cuXdnZ22mdo5Ozbt08sFuthQzk5Ofn5+evXr5dvjI2NjYyMLCoqSktL00MOmvHVV1/1799/woQJBommqltS9/z169efOXMmNzeXiZT/D2NRlvb29o0bN/r6+vJ4PFtb28GDB9+9e1ckEiUmJjo7O3O5XG9v77Vr1xI9e+fOnVwu19fXNz09PTAwkMfjBQYG/v77797e3hiGmZqaxsXFIYTa2tqGDx/OZrMHDRqksLmampqWlpaJEycihCQSSVJSkqOjo4mJSb9+/S5dukQzZ6lUWlNTk5SUxOFwVq9ezWQ5NOX8+fNCoRDDMGIvVBUqNTXV1NTU19c3PDzc2trawcFh/vz5z58/RwglJCRwOBzi5aD29vZhw4axWKy4uLglS5akpKScO3cOw7AFCxYghLKysqytrRnvkQihjIyMwYMHOzo6KrQfOHDAwcFh06ZNCv5qBEp7i6oKIIRaWloSEhJcXV2trKzGjx9/+/ZtLdOuqKj4+uuvU1JStIyjZTTqbinf8wlcXFy8vLwyMjK0zVgB+qc3Oj0tnz17NtFNRSLRH3/8ERkZefXq1bi4OGdn52vXrrW2thYUFPTp02f27NnE+osWLXJ0dCwtLW1vby8pKbGxsVm0aFF7e7uzs3NQUBAZtqWlxdvbWywWK2wuKSnptddea2trw3E8JibGzs4uPz9fLBaLRKJJkyZ1ezWE4/izZ8+IAvr6+hIXyTpC3bIXFRUhhC5evEgsKi0UjuPR0dE+Pj7V1dVisfjChQt8Pv/tt98mvhIWFjZ27Fgy4LBhw2JjY3EcHzt27JQpU8j2o0ePWlpaZmdnq7U73V4NdXZ2crncOXPmyDfy+Xzij/z8fIRQQEBAR0cH/r9XQ6p6i6oKTJ482d/fv7y8vLm5ec6cOXw+v7W1leZeoC4XLx0dHePGjSstLcVx/NChQ0i7qyGNo3XbLeV7PklUVBSXy+3s7KSI3COvhurq6o4dO7ZkyZKIiAgLCwsnJ6c1a9ZgGHb8+PHly5ePHj3a0tJy0qRJiYmJx44dq6+vJ75lbm4+aNAgU1NTPz+/oUOHVldXm5qaJiUl/fe//z1//jyxTkZGRnx8PJfLld9cQUFBdnb26dOnzc3Na2trT5w48f777wcHB3O5XAsLC5pv3Nna2kokktra2pUrV06bNs0Y3utRRddCEe3W1taurq5cLnfChAmJiYnZ2dlPnz6lHzYuLq61tXXGjBnMZltbWyuRSIRCodJPg4ODExISiouLFf6ZP3nyhKK3dK1AVVVVQUHBihUrvLy8bGxsli5d2tTUdO3aNY3T3rRpU3R0dNezYz1Ho+6W8j1fvl0oFBLf0jJteYxCWe7du4fj+LBhw8iWgIAAYqDO29ubbPTz88NxnPQVlofNZuM4jhBauHBhv379Pv74Y4SQVCr96quv3nvvPfk1f/zxxw0bNly+fNnd3R0hVFZWhuP48OHDNUjbzMzM2dl53rx5K1eu3Lx5M7MHRkeQhVKAmIu/oqJC7xkpQlyUKXR9edLS0ry8vLZs2VJcXEw2lpeX0+wtRAWIPY2PjyfuZ48YMQIh1NTUpFnOV69effDgweLFizX7OrPRVHVLhZ4vj6WlJfq78kxhFI7xxDmFwtAp6SVMthB/UxtocbncVatWrV69+qeffnr06FF4eLiNjQ356f79+wsKCgoLC4lSIoSIWelNTU21yX/QoEEymay8vNzFxUWbOAaEqAOd0Wv9wGKp/J/H4/GOHDkyZsyYOXPmEHNoIvV7C3HEc3NzGZme4uDBg3l5eQrbGjBgwJQpUzSY0oipaPLdsmvPl4eoNrPWdEZxzjJw4EAMw27dutW1Uf6Jr5KSEgzDBg4cSB0tISGBz+d/9NFH6enpK1asIBqJK8zq6urs7Gz54hL6ff/+ffrZVlVVKTxAQSTp5OREP4ixUVxczOFwiNpiGKajp6foQPwnoL4JNXLkyOTk5Pv375PPj6nbWwYMGIAQunv3LiM5Hz16VH6IgRwZ0WymNM2iqeqWjo6OSnu+PMS0XvL/g7XHKJTFwcEhPj5+165dX375ZUtLi0wmq6+vl8lksbGxu3fvvn79+osXLwoLC/fs2RMXF9evXz/qaBYWFitWrLhy5cqoUaPIy/Xi4uLU1NStW7ey2WxMDh8fn9GjR6empl69evXFixfnzp3r9h4Bj8f7/vvvi4qKxGKxWCzOzs7evXt3bGwsU9fYekMqlYpEovb29vz8/IMHDy5cuJC4Senk5FRSUlJWVtbR0VFVVSUSiYj1eTzegwcPGhsbm5ubEULffPONLu4Nubi4cLlccjRNFRs3bgwICCAXhUKhWr3FxcUlLCxs586dp0+fbm9vl0gkZWVlhM9saGiop6dnY2MjI7ujt2iqumVbW5vSni//3fr6enNzc2dnZ0aS/P/QH+zV6b2htra2f//7366urhwOx9bWNjg4+O7du62tre+9955QKORwOI6OjkuXLiVG73fs2EGMsxK3gWJjY9lsNpvNXrZsGRHt+fPnfD6/oqKCjK9wQiS/+48fP46MjOzTp49AIJgxY0ZISAiLxVqwYAFFqsHBwS4uLubm5paWlkOGDElNTe16+4kp1Cp7WlqaQCBACNnb23/yyScUhYqOjrawsODz+Ww2WygUrlu3TiqVEkHKysr8/PzMzMyGDBmSkpISEBBgYmKydu3avLw8e3t7a2vruLg4HMePHz9uaWmZk5Oj1u7QeVJuypQpAQEBxN9ZWVmurq4IIVdXV4UvPnjwgMvlkveGlPYWigo0NDTMmjVLIBBwOBwPD48PPviAGNqbNm0aQkjpfp05c2bEiBH29vYIIQ6H4+npGRkZ2XU1+bs5FNFoBqQZTVW3pOj5JH5+fsHBwUozJFH33pCxKAugCh2VPTo6evTo0YyH7RY6ypKTk8Nms6urq/WSkSIymczb2/v27du9PhrBo0ePWCxWbm4u9Wo98q6zsVFRUYGpxhhuoDACcfJvhEyfPj0kJGTLli3633RHR0dGRoaDg4P8pVavjEayefPm0NBQxidaBmVRgqenJ4UYw6SNeiArK+vRo0d6fokZIVRQUHD79u1Tp071+mgEO3bsqKuroz8jP31AWV5FkpKSvvvuu5s3b/r6+paWlho6HSVYWlqeO3dOKpXq4u0BCkJDQw8dOmRtbd3royGEcnNzZTJZfn6+hYUFUzFJjOX5BUCfbNu2bdu2bYbOohtYLJaRvI3VW5k+fbrugsM5CwAAzAPKAgAA84CyAADAPKAsAADoAPqPvsTHxxs6WaDHo+XLn4AB6devH325UO/e0JQpU9asWaOjvI2E+vr6mJiYrKwsVVOE6JnPPvsMIdRryj5z5sy5c+cGBwcbOhFAPc6ePfvNN9/QX189ZREKhcQ8hr0Y4vXZkSNHurm5GTgVhBBCmZmZCKFeU3Yulzto0KBeszuvDlVVVRRTW3QFxlkAAGAeUBYAAJgHlAUAAOYBZQEAgHlAWQAAYB6dKMuZM2feeustZ2dnMzMzLpfr4OAwcuTIjRs3Mr4hpVbYWVlZpMc4AY/HGzBgQFRU1A8//MB4DhR89tln9vb2GIbduHFDn9vtHYBjvAbRmpqaEhIS+vXrZ2pq2q9fv4SEBIpoPckxHsfxd955Jzw8vH///ufOnWtpaXny5Mn3338/adIkXfyqlVphx8TE1NbWmpmZTZw4Ecfxjo6OioqKTz/9tLKyMjw8PC4uTm8zHq1Zs+b06dP62VYvAxzjNYjW1tY2bty4ioqKGzduEJM6k95SSqP1JMf4PXv2IIS2bt3a9SPSgo9BKKywSWUh6ejoIGy3Pv30U4qYlZWVSE2DOwquXr2KECoqKtI4go5mq9TS/l3jr4NjvFoB1Yq2ceNGKyurv/76S9UKSqP1DMf47du329nZKf0f8u233zK7LUTbBJ6Aw+EcOHCAx+Pt3LkTV/EP59VBS/t3nbrHg2O8ZtEOHz4cFhZGGDDQj9YDHONramoqKytHjRpFYWCqHxN4VQgEgjfffLOhoeHhw4fa7OmWLVu4XG5gYOCvv/4aFRUVGBjYrf24Kid2bdIgUVpVii0q2L+rMpA3lHs8OMZrEO3Jkye1tbV+fn7qRusBjvGELe78+fMp1tGPCTyu7GqI3ApC6NKlS6oypHk1tGjRor59+27fvv306dPTpk1TZT8ufzWkyomdGjpXQ6qqSrFFBft3VQbyjLvHg2M8nYAaRPvll18QQiNGjBg6dKidnZ2FhcXIkSOvXr1KJ5qxO8YTI0MULxdQ23ojhkzg6aSq1hsQqrCyslq5cmV4ePiuXbuYtR9Xi26rShNtDOQZdI8Hx3jNohG/vsGDB2dmZtbW1v7222+WlpZTp059+vRpt9GM3TGe8Fh7/PixqhXo23ojLUzgqamrqyNTZQpm7cfVRa2q0sSABvLgGK9ZNGJ4ZfDgwUOGDLGwsHBwcPjggw+eP3/+0UcfdRvN2B3j3dzc3N3dr127JhaLlfYM/ZjAU9DR0VFUVOTi4kLY+jIFs/bj6qJZVakxuIE8OMarG61///48Hk/+RLVv374Iof3796MudVCI1gMc45OTk5ubm5V6UL311lteXl56MIGnYM+ePU1NTWQEpqBpP64jJ3YKs3SNt0gayOvfPR4c4zWLxmKxpk6deu7cOVJea2pqEEL5+fndRusBjvELFixITEzcsmXL4sWL7927J5VK29vby8rK9u/ff/nyZQcHBz2YwJPf6uzsJP6ndXR0/Pbbb+vWrVu1alVMTAzjD1ZR2I/Lo8qJXUsozNIptqhg/45UGMjr3z0eHOM1jrZp06aqqqrk5OTW1tbq6upPP/3Ux8dn0qRJ3YbtMY7xhYWFM2bMcHJyMjEx4XA4AoEgMDCQePBJDybw2dnZPj4+5ubmJiYmhNBwOByhUBgWFkbn5gWde0MpKSlEtj4+Pr/88guO40rtx7du3crn8xFCAoFg69atqpzYqfOhU3ZVVaXYooL9uyoDecbd48ExXt2A9KPhOH7z5s1x48aZm5s7ODhER0fX1NRQRCMBx3h9wOwzuNqjn7LrzUAeHOONJxoBOMYDusV4DOTBMV4P0UjAMR54hQDHeF1HIwDHeECHGKGBPDjG6zoaAsd4QNcYp4E8OMbrGnCMBwCghwHKAgAA84CyAADAPOqNs9TX11+6dEk3mRgLxNOfN27coD+PqU4h8uk1ZSeedu01u/PqIP/mBC3oP/oCjvEA8Cqj1pNyGP7Kz9sI0ATDsIsXL4IlM0AHGGcBAIB5QFkAAGAeUBYAAJgHlAUAAOYBZQEAgHlAWQAAYB5QFgAAmAeUBQAA5gFlAQCAeUBZAABgHlAWAACYB5QFAADmAWUBAIB5QFkAAGAeUBYAAJgHlAUAAOYBZQEAgHlAWQAAYB5QFgAAmAeUBQAA5gFlAQCAeUBZAABgHlAWAACYB5QFAADmAWUBAIB5QFkA4P+xd6dxTZxrw8DvISEre1ACsogCEQWLqGi1FVQsCPgIxwJlKWhbj6Io6lFa3LAV2wqox2K1as/Rai22pYC2llKwYP0pPvaIFjdEiix1pViUJQEk836Yp3lzAplsk0yC1/8Tmczcc933JBezZS5APcgsAADqQWYBAFAPMgsAgHqQWQAA1IPMAgCgHobjON0xACN14sSJ77//Xvby+PHjs2bNGj58OPHSw8Nj3bp1NIUGjB2T7gCA8RIIBAcOHJCfUlxcTPyBYdh7771HR1DANMA+C1AKx/ERI0bcv39/0Hfr6uo8PT0NHBIwFXCeBSiFYVhSUhKHwxn41oQJEyCtABKQWQCZuLg4iUSiMJHNZi9cuJCOcIDJgKMhoIKnp2d9fb38FAzDfv/9dycnJ7pCAsYP9lmACsnJyWw2W/bSzMxsxowZkFYAOcgsQIX4+Pje3l7ZSyaTmZycTGM8wCTA0RBQzd/f//Lly8TfTCaztbXVxsaG3pCAkYN9FqCa7ICIwWCEhoZCWgEqQWYBqsXGxvb19aG/rkPTHQ4wAXA0BNQSGBj4888/c7nctrY2LpdLdzjA2ME+C1ALcdb2b3/7G6QVoBZcDpzzBwBox83NTT6ZKP4iMSQk5J133qElMqCFDz/8ECFkmE22Y8eOVatWMRgM/a3itddeW7hwYWhoqP5WAfThhx9+OH78uPwUxcwiFAqDgoIMFxHQzeHDhxFChtlkEydOtLS01OsqOBzOmDFj4BNochobGxWmwHkWoC59pxUwlEBmAQBQDzILAIB6kFkAANSDzAIAoN7zlVk+/PBDOzs7DMMuXLiAEDp69Ki9vX1tba3WDa5bt87T05PH49nZ2QUEBBw5ckRhhvb2dn9/fwaD8dJLL5E3lZGRMWrUKBaLZW1t7efnl5eXp3VUJHTvspGQSqW5ubmxsbEuLi4YhmEY9tFHH8neLS4uHjVqFIZhQqFw9+7dhgysvLw8ODh406ZNymaoqKhgMBgDL6Zo16BGrbW1taWkpDg4OLBYLAcHh5SUFJLWiouLc3NzpVKpmnEqeL4yyzvvvHPy5EnZS+KWHl0aLC8vz87Obm1tra+vDwsLS05OPnr0qPwMNjY21dXVc+fOVdlURUXFBx988McffzQ1NcXExKxcuXLv3r26xDYo3btsDDo7O0NDQ/l8/pdfftnS0mJpaWljY5ORkXH79m1ihsjIyIaGBpFIdO3atbS0NMNEdevWraysrMePH58+fVrZIP/5559JSUlqfl1VNqhRa93d3UFBQfX19RcuXOjq6iotLW1qaiJpLTIyksPhhIWFdXV1qdO+gucrsyhISkpqa2sbM2aM1i24u7tHRUXx+Xw7O7stW7ZYW1t//fXX2jXl5OQUGxtrZWVlY2Ozfv16gUBQUlKidWDK6N5lZVpbW6OioihvdlBxcXEeHh6yf7ksFmvPnj3d3d3Jycn9/f2GiWEgkUi0cePGmJgYknmWLl368ssvU9WgRq1t3769qanpq6++cnd3Nzc39/Pzky/5Mmhrqampbm5ucXFxaq5C3nOdWbT25MmT995779GjR4WFhfLTcRzHMGzg/Eym6uor8k1JpdJnz57Z2trqHqrB7N27VywWG2BFhYWFJSUlGzdulJ+YkJAQHR1dVVWVm5trgBi08+9//9vNzW3WrFm0tHbo0KHw8HBlHyplrW3cuPHUqVNFRUWahqdZZtm+fTuHw7GwsPDx8bG1tWUymQKBYObMmT4+PjY2NiwWa8qUKS0tLcTMJ06c8PT05PP5PB5vxowZd+7cQQh9+umnXC4Xw7CRI0f+9ttvO3bssLCwGDZsWHl5+aBrzMnJYbFYPj4+8+bNs7KycnR0fPPNN588eUK829nZuWLFCmdnZw6HIxKJ1q9fT3y4lU2X9+OPPwqFQgzDKisrEUK7du3icDg+Pj55eXmTJ0/m8XiTJ0/+7bffiJnFYvG6devc3NxYLNbIkSPd3NzMzc1lNb0Izc3NT58+nT17NkJIIpGkp6c7OTmZm5s7ODgQq1BHb29vc3Nzeno6k8mkvE6Y+l1WNuwpKSlMJpO4R7anp2fixIlmZmaJiYnLly/PysoqLS3FMOytt95CCOXn51tZWWnxiVRp//79Y8eOHfi4zE8++cTR0TEzM/PatWsDlxr0I0EyAk+fPk1JSXF1dbW0tJw5c+alS5d0DLu+vv6zzz7LysrSsR3tWrt//35LS4uvr6+mrbm4uHh6eu7fv1/jEBV+kZicnIyTWr58ub29fV1dXU9Pz82bN4cNGzZjxoza2lqxWHz16lU+n7927Vpizry8vH/961+dnZ1NTU3ER5OYfunSJS6Xu3nzZhzHHz58+D//8z+tra0ka4yNjfX29m5qahKLxadPnxYIBK+++irxVmJiorOz87lz5zo6OsrKyoYNG/b666+TTMdx/OzZswihqqoqHMerqqoQQhUVFcRbS5YscXJyunnzZk9PT01NjbW19ZIlS4i3Vq1aZWtre/Hixa6urk8//RQh9NVXXynEmZ6ePm7cuO7ubhzH4+LibG1tS0pKxGJxZ2dncHDw9OnTyQcWx/E///yT2Cg+Pj7EobVK6mwyeep3Wdmwh4eHBwYGyhqcOHFiQkICjuOBgYEhISGy6UePHrWwsCgoKFA/NhzH3dzcDh06RDJDf38/h8NJSkqSnygQCIg/iONHf3//vr4+HMdFIpHso6XsI6FsBObMmePn51dXV9fe3p6UlCQQCDo6OtTsBUJow4YN8lP6+vqCgoJu3ryJ4/jBgwcRQnfu3FGztYENatEa8UjAgICACRMm2Nra8vn8qVOnnj17Vp3WYmJiOBxOf38/SfuHDh1S+EWiNkdDbDbb09OTxWKNGTNm0qRJOI6LRCIi93t5ef3+++/EbKmpqW+88Qafz3d1dfXy8rp79y4x3d/f/8CBA1u3bv3000/ffPPNvLw8e3t78jVaWVm5urpyOJxZs2atWLGioKDg4cOH9+/fP3bs2KpVq6ZNm2ZhYREcHLxixYrPP//88uXLg05/8OCByq5xudwxY8awWCxfX98JEybITnF99913c+fOJf6tvfnmm3Z2dmfOnJFfsKysrKCg4OTJk1wut6Wl5fjx4ytXrgwNDeVwOHw+X/4J1SRsbGwkEklLS8uaNWvmz5+/ZcsWdZbSkbIuIyXDrmaziYmJHR0dCxYsoDbalpYWiUQiFAoHfTc0NDQlJaW6ulrh36+yjwrxkRg4Ao2NjWVlZatXr/b09LS2tk5NTW1razt37pzWYWdmZsbGxlJ1ekuL1ojzsmPHjj18+HBLS8vt27ctLCwiIiIePnyosjWhUEh8LDUKUtfzLGZmZvKnps3MzPC/TmJ/+eWXU6ZMsbW1ZbFYZ86cweVObicmJqalpS1evHjx4sWurq4ardHHxwchVF9fX1dXRyQ12Vu+vr44jn/33XeDTq+rq9NoRQwGQxazRCKRj18qlconi++//37Tpk1nzpwZNWoUQqi2thbH8UmTJmm0OgKbzXZ2dl60aNGaNWu2bt2q6ebUkXyXFciG3ZDxDEQcCJM8IyY3N9fT03Pbtm3V1dWyico+KgM/EsQIEN1MTk4mrmcHBAQghNra2rSL+ezZszdu3Fi6dKl2i1PSGnF6ZezYsePHj+fz+Y6Ojm+//faTJ0/effddla1ZWFigv0Zeffo6g3vr1q34+Php06bduHGjq6srMDBQ/l0cxzs7O318fNavX9/Z2alRy8Rz5JlMJnGuVP6bQPxtZmY26PRBz62q6ZVXXvnhhx/+85//dHd3f/LJJ+3t7eHh4cRb+/bt+/TTT8vLy52dneUjZLFYWq8OITRmzBipVKppNtQf2bDTHQhCf23iQfF4vCNHjuA4npSU1NPTQ0xU9lFR9pEgtl1RUZH87n18fLx20R44cKC4uBj7y+LFixFC7u7u2j0sQrvW3NzceDye/G47cZZw3759KlsjRlvTr4++MsvVq1elUumKFSscHR3Nzc0V3s3IyAgODi4rK/vzzz/feOMNjVqurq5mMpleXl5eXl4Yhsnf9FVTU4NhWERExKDTvby8tO7Ojh07hEJhcHCwnZ3dnj17Dh8+PGvWLBzH09PTm5qaCgoKiLxOIPZcrl+/rn77jY2NCrddEPGPGDFC65ipJRt2DMO0vntKd9bW1ggh8otQU6dOzcjIuH79uuz+MWUfFWUfCXd3d4TQ1atXKYn56NGj8hlKdi7jhx9+MFhrZmZmERERpaWlsvTa3NyMECopKVHZGlEkkxh59ekrsxBfiZ9++kkikVRXV8tOsiCE/vnPf7q4uMTGxgqFwq+//rqoqEjllcLe3t7Ozs6enp6SkpIDBw4sXrzY1tZWKBQmJCTs3r37/PnzXV1d5eXle/bsSUxMfOGFFwad7uDgoHV3tm3b5uXl1draKpFIrl27Rjx8r7q6OicnZ/v27QwGA5Pj7e09bdq0nJycs2fPErckqbyywOPxvv3226qqKrFYLBaLCwoKdu/enZCQoI8bT9Q36LCPGDGipqamtra2r6+vsbFRtsvJ4/Fu3LjR2tra3t6OEPriiy/0cW3IxcWFw+GoPGW2efNmf39/2UtlHxVlHwkXF5fw8PBdu3adPHmyp6dHIpHU1tYSd8qEhYV5eHi0trZS0h1DtpaZmdnY2JiRkdHR0dHU1PTBBx94e3sHBwerbPbBgwdcLle2S64u+Yyl8kLDhx9+SJxf8PX1ffTo0dxi9StzAAAgAElEQVS5cxkMhpmZ2ZQpU3p7eydNmoRhmLm5+T/+8Q8cx5cuXWppaTl8+PC0tLT4+HgGg5GamkrsZTk5OT148ADH8bFjxxJhxMTEKFtpbGwsn88XCAQMBkMoFG7YsKG3t5d4q6OjY9myZUKhkMlkOjk5paamEifwlU3fvn27QCBACNnb2w8fPpw4c2xnZ/f+++/v3LmT6NqUKVNwHE9ISGAwGAwGIy0tDcfx3Nxc+cLp1tbW8+fPLy0tVTak9+7di46OHjZsmL29/YIFC+bOnWtmZvbWW28p62N3d3doaKiLiwuXy7WwsBg/fnxOTo5YLCbZFmpuMnm5ubnqd1nZsNfW1vr6+rLZ7PHjx2dlZfn7+5ubm69fv764uNjOzs7KyioxMRHH8WPHjllYWBQWFqoZG0HltSEcx0NCQvz9/Ym/8/PzifN0rq6uCgveuHGDw+HIrg0N+pEgGYFHjx7Fx8fb29szmczRo0e//fbbz549w3F8/vz5CKFB+3Xq1KmAgAA7OzuEEJPJ9PDwiI6OHjib/PUXktbUbFD91nAcv3jxYlBQEJfLdXR0jI2NbW5uJmlNxtfXNzQ0VFmbhIHXhjS+6mx4sbGx06ZNozeG999/f9euXbKX9+/fd3Nze+edd2gMiaC/TUbLsKuTWQoLCxkMRlNTk0EiUiSVSkUi0aVLl4Z8a4SGhgYzMzOFU04DUXPVmXL19fWYcvX19TTeso0Qam5u3rBhw6JFi2RThEIhl8vV9JZTld2kOnBd0TvsykRFRc2dO3fbtm2GX3VfX9/+/fsdHR3lD7WGZGsyW7duDQsLi4yM1HRBo8gsHh4eJOnQw8OD3vA4HI65ufnBgwfb29uJQ+633nrrzp07ml4sMPJumpD8/PyGhgYD/4gZIVRWVnbp0qUTJ04M+dYIO3fuvHv3rsKjs9VkFJmFRHp6+jfffHPx4kUfH5+bN2/SEsPw4cNPnDhRVFTk5ORkaWk5a9asp0+fnj9/nrjNYUgyhmEnYWFhUVpa2tvbq49fD5AICws7ePCglZXVkG8NIVRUVCSVSktKSvh8vhaLG8XtCSSys7Ozs7PpjgKFhoY+V6UqjGTYSZiZmVH+uyogT8dfrhv7PgsAwBRBZgEAUA8yCwCAeornWR48eKD+w0QA7Yi7UYfMJiMuvQ2Z7jw/amtrFX/zIX/hEyrGA3rp+DNOQCMHBwf5ZKK4z5KcnEyUCgYmYeHCheiv6s5DwMiRI7ds2UJ0CpiQw4cPKzxOCM6zAACoB5kFAEA9yCwAAOpBZgEAUA8yCwCAepRllvz8fFmF3W+//XbgDA0NDcTDa11cXPLz83VpH8Mw4nnr77zzTkdHh3YBG6bGs0LYGIbxeDx3d/eYmJjvvvtO63UBEkZY8tnPz2/gczNUVgvSbilk2PrNSincz6LjY4SIB6/J152RWb58OUKIzWbr0j6bzZ49e7ZUKn38+PGBAwfMzc1feuklrVuTrz302Wef2dnZEVVXtOPn51dYWNjZ2dnW1paZmYkQIh71LAsbx/G+vr67d+/m5+cTT/ZPSEggnlSmNeN8WJfW1HnyE7mOjo45c+bs3buXeEmUfObxeMTj+2XkSxEZwAsvvDDwq0cUtKB8qa6uLh8fn+Dg4IaGht7e3suXL8+dO1d+hsePHxOPnpQ9Oy4vLy8kJKSzs1PrDur9mXICgYBItAobsrW1dfjw4ZMnT6Yks8heEk/nvnXrlnatyWcW3UVFRcm/tLa2njdvHvG3Qtg4jvf19RG1eD744ANdVqqnzPLo0aPIyEjDL657ZomIiEhJSZG9FAgEn3/+OULoxRdflE/iBs4sr7zyinwlsMePH4eHh+tpqc2bN1taWj5+/FjZDDExMUSpZvmnUv7973+XfVy1YIhnyq1YsQLH8b1798pP/PjjjxMSEognelJo5MiRCCH5x3cbmKzAM/rvwsxIeY1nApPJ/OSTT3g8HvEQTL0HqiEdizQbrMazAqMt+VxaWipfySQ7O5vYhdfHUgau36wM9ZklPj5eIBAcPny4u7ubmCIWiw8cOLBmzRqFOXUv/Ew8lIiowmGYGs/qFHhG/13jWRl7e/sZM2Y8evTo1q1bao6tdgYdAWUVmhFCCkWajbnGswItSj4r+3jor+Tzo0ePzp07N3fuXH0sRUP9ZmXkd2AoORrCcfydd95BCO3fv5+Y+PHHHy9atAjH8ZCQEPmjIS0KP8sOK/74448dO3aYmZnJ9roNU+NZnQLP+H/XeMYHOxqSrQUhVFlZqeVwq7fJlI2AsgrN+IAizQar8azL0ZB2JZ9JPh76KPmM4/iqVau+/vprTXun5lL6rt+sjCHOs+A43tLSwmQyx48fj+P4s2fPPD09if4oZBZ5gYGB8pUHjh49imHYwYMHIyIi5J/SLqt5ymazRSLR5s2bibqo9+7dwzAsNzdXNud7772HYVh1dfWg0+/fv4+ryiyjR4+WLRUUFESE5+HhER8fL5tuZ2e3fPlyhb78+OOPo0aN+u233+TDJsksP//886Bjog6Vm0zZyNy/f1+jzELUzSAQvxB58OCBmplFfbpkFuJKR3p6uvxEWWbBcZy4RJKZmYn/lVlIBgdX8hkg9qw/++wzYuLFixcRQj/88IOaQd69e3fChAmafnvVX4rYgVq4cOGvv/7a2dl579694OBga2vrBw8erF+/ft++fcRsg2aWlStXIoQaGxs1io1goGf3Ozs7R0ZG1tTUnD17trCwcNy4cYNW5NKu8DPxFSV+bv/uu+8SucZgNZ7JCzyjATWeyRFniDSuEaUJ9Usaq89Iajwr0KLks0aDQ0nJ561bt6alpZFUj9VxKcPXb1ZGX3fKEfnv448/zsnJIQ6OFFBb+BkzVI1nkgLPaLAazyT6+vqqqqpcXFyIWp96omxktB4BZGQ1nhVoVPJZi8HRpeRzY2Pj6dOnExIS1O6NxksZvn6zMvrKLC+//PKECRO++uorPp8/ZcqUgTNQW/jZYDWeBy3wjBDCldR4JrFnz562trbVq1drF4maSEoaY9pWaDaSGs8KtCj5rGm9Z6Rbyed333131apVmmZkjZYyfP1mpZFQ0sqgiMvPg+6wIKoLPxusxvOgBZ6R8hrPsgX7+/uJ/5N9fX23b9/esGHD2rVr4+LiFArFU46kpLGyCs1oQJFmZJQ1nhVoUfJZ03rPSIeSz3V1deXl5QP/TWqxlHHVb1ZGPpPpcgZ3YIVdsVg8Z84c4t1ffvll3LhxxO6Wq6trfn4+rmHh5+HDhxP/LjAM8/DwyMvLUwjAMDWeBy3w3NbW9ssvvww6vAUFBd7e3lwu19zcnEg0TCZTKBSGh4erc61EJXU2mbIRUFahGcdxhSLNBqvxrOOdclqUfFY2ONSWfMZxPC4uLjs7e+B0LZaisX6zMiZZ19moGFuBZ8NsMoPVeNYxs5hiyWctlqKxfrMyRlrX2VRQVeDZFBlnjWcFJlfyWYuljK1+szKQWTRAVYFnoD+mVfJZi6WMrX6zMpBZNPAcFnhGRl/jWYFplXzWYiljq9+sjDHekmDMnrcCz8gUajwrgJLPGtGxfrMysM8CAKAeZBYAAPUgswAAqAeZBQBAPcUzuFeuXFGoogiM2ZUrVxBCQ2aTtbe3FxcXEz/qASaE+BzKw3C5H3p++OGH8r9QAsavr68PITTwJ536UFNTM2rUKDV/b6mdnp4eJpPJYDD0twqgJ0KhUP6OmP/KLACQwDCsoqKCeDwlAOTgPAsAgHqQWQAA1IPMAgCgHmQWAAD1ILMAAKgHmQUAQD3ILAAA6kFmAQBQDzILAIB6kFkAANSDzAIAoB5kFgAA9SCzAACoB5kFAEA9yCwAAOpBZgEAUA8yCwCAepBZAADUg8wCAKAeZBYAAPUgswAAqAeZBQBAPcgsAADqQWYBAFAPMgsAgHqQWQAA1IPMAgCgHmQWAAD1ILMAAKgHmQUAQD3ILAAA6mE4jtMdAzBS+/bte//99/v7+4mXT5484fP5TCaTeDlnzpzPPvuMvuiAUWPSHQAwXrNnz162bJn8lO7ubuIPDMOmT59OR1DANMA+CyDj6+t77dq1gdMZDMbDhw8FAoHhQwImAc6zADILFy5ksVgKExkMxiuvvAJpBZCAzALIxMXFPXv2TGGimZlZUlISLfEAUwFHQ0CF6dOnV1VVyX9O2Gx2W1sbn8+nMSpg5GCfBaiQnJxsbm4ue8lkMqOioiCtAHKQWYAK0dHRUqlU9hLH8cTERBrjASYBMgtQwdbWds6cOQwGg3jJ4/HmzJlDb0jA+EFmAaq9/vrrGIYhhFgsVlxc3MCrRQAogDO4QLXu7m6BQCCRSMzMzCoqKmbMmEF3RMDYwT4LUI3H482fPx/DMHt7+5deeonucIAJMJa7+ysrK+kOAZB54YUXvvzyy5kzZ/788890xwLI+Pn52djY0B2F0RwNEYfxAAAdVVRUBAUF0R2FMR0NVVRU4M+TwMDAzMxMuqPQwM6dO0nefQ63oBGi+0v8/xlRZgFGLi0tje4QgMmAzALUZWYGnxagLvisAACoB5kFAEA9yCwAAOqZWGZpb2+Pj4+3sbHBMMzOzg7DsAsXLtAd1P8pLy8PDg7etGmTnto/evSovb19bW2tnto3GKlUmpubGxsb6+LigmEYhmEfffSR7N3i4uJRo0ZhGCYUCnfv3m2YkPz8/LABsrKy9LEUQqitrS0lJcXBwYHFYjk4OKSkpCjMUFFRwWAwGhsbEULFxcW5ubnyPwo1CSaWWd55553u7u579+5FRUWdPHmS7nD+z61bt7Kysh4/fnz69Gn9XfkztsuK2uns7AwNDeXz+V9++WVLS4ulpaWNjU1GRsbt27eJGSIjIxsaGkQi0bVr1+i9GqXdjxhULtXd3R0UFFRfX3/hwoWurq7S0tKmpib5Gf7888+kpCRZKomMjORwOGFhYV1dXVrEQxcTyywnT56cPn06j8crLCxUZ/7W1taoqChlL6kiEok2btwYExNDecvykpKS2traxowZQ3nLehqWQcXFxXl4eMj+S7NYrD179nR3dycnJ8uKBBieg4NDf3+/7K6Qx48fh4eHq8wR2i21ffv2pqamr776yt3d3dzc3M/P7/vvv5efYenSpS+//LL8lNTUVDc3t7i4OO16RwtTyixSqfTBgwfyTyFSae/evWKxWNlLQDDYsBQWFpaUlGzcuFF+YkJCQnR0dFVVVW5urgFiGFRpaan8NfXs7Ozly5fraalDhw6Fh4fb2toO+u6///1vNze3WbNmKUzfuHHjqVOnioqKVLZvLAx8j6AySNUdnN99952bm5ss7ISEhLNnzyKEiAcp4jheXFzs4eHB4/G4XO7LL7/c0NCwbNkyWXGcN998U+EljuNPnjxZunSpi4uLhYVFUFDQf/7zn507d7LZ7HHjxn300UeTJk3icrmTJk2qr69XvxcbNmxQc2aN7sEtLS11cHCQjZKyOLOzs83NzceNGxcREWFpaSkUCt9444329nYcx5cuXcpgMAIDA3Ecl0gk/v7+GIYlJCQMHJYvvvjC0tKysLBQzdhkfVd5D+4rr7zi6+srP0UgEOA43tbW5ujoyGazr169SkwXiUStra04jnd0dKSmpo4YMYLNZnt5eWVkZHR3d5OMAD7YZtWoIw8fPnz55Zc1WkT9pe7du4cQ2rZt26Dv3r59e8aMGT09PQcPHkQI3blzR/5dkUgUEhJC3r46W8EwTCaz4Dje19eHENq1axfxUiGz5OXl/etf/+rs7GxqanJ0dCS+JIGBgfIbQ+HlnDlz/Pz86urq2tvbk5KSBAJBR0fHkiVLnJycbt682dPTU1NTY21tvWTJEvV7oafMguN4VVWV/CgpizM2Ntbb27upqUksFp8+fVogELz66qvEIuHh4URmIUycODEhIQEfMCxHjx61sLAoKChQPzZcjS3Y39/P4XCSkpLkJxKZBcfxkpIShJC/v39fXx8ul1kSExOdnZ3PnTvX0dFRVlY2bNiw119/nXwEBt2s6ndk1apVX3/9tQY912Spy5cvI4QCAgImTJhga2vL5/OnTp169uxZHMf7+vqCgoJu3ryJ4/igmSUmJobD4cgffw1kPJnFlI6GyKWmpr7xxht8Pt/V1dXLy+vu3bvk8zc2NpaVla1evdrT09Pa2jo1NbWtre3cuXMIIS6XO2bMGBaL5evrO2HCBIUTbMZDWZxWVlaurq4cDmfWrFkrVqwoKCh4+PCh+s0mJiZ2dHQsWLCA2mhbWlokEolQKBz03dDQ0JSUlOrqavlrK/fv3z927NiqVaumTZtmYWERHBy8YsWKzz///MGDB8QMA0eAZLOq4969e2fOnPnb3/6mUdfUX4o4Lzt27NjDhw+3tLTcvn3bwsIiIiLi4cOHmZmZsbGxJOfRhEKhRCJpaWnRKDa6DJ3M8uWXX06ZMsXW1pbFYp05cwZXdRmlvr4eIZScnExcLAwICEAItbW1KczGYDBUNmUMlMXp4+OD/uosvZ48eYIQ4nK5ymbIzc319PTctm1bdXU1MaWurg7HcZFIJJuHOJiqq6sbuDgxAmpuVmW2bt2alpam6e8Y1F+KOL0yduzY8ePH8/l8R0fHt99++8mTJ+++++6NGzeWLl1KsqyFhQX6axiN3xDJLLdu3YqPj582bdqNGze6uroCAwNVLkI8crGoqEh+Fy4+Pl7/wRpUb28vQkh2JoV2JF8/Ho935MgRHMeTkpJ6enrQX8/WkM+YxN8kz9zQZbM2NjaePn06ISFB7d5ovJSbmxuPx5PtcyGEhg8fjhDat29fcXGx7KaYxYsXI4Tc3d1DQ0NlcxJDZyrPGxkimeXq1atSqXTFihWOjo5qXjxyd3cnFtRzaDSrrq5mMpleXl4IIQzDaLzhytraGiFEfhFq6tSpGRkZ169fJ24S8/LywjBM/ubAmpoaDMOI7gxKl8367rvvrlq1StMsrNFSZmZmERERpaWlsnTZ3NyMECopKZFPhbLzLD/88INsWYlEgv4aRuM3RDLLiBEjEEI//fSTRCKprq6WnWTh8Xg3btxobW1tb29XeOni4hIeHr5r166TJ0/29PRIJJLa2loab6mgUG9vb2dnZ09PT0lJyYEDBxYvXkzshI8YMaKmpqa2travr6+xsbGzs5OYX2GUvvjiCysrK8ovcLq4uHA4HPl/14PavHmzv78/8bdQKExISNi9e/f58+e7urrKy8v37NmTmJhIXCZTthZlmzUsLMzDw6O1tXXQBevq6srLy9944w2F6VosRb5IZmZmY2NjRkZGR0dHU1PTBx984O3tHRwcrKxHMg8ePOByuc7OzirnNAr6OzmsEaTqnHZtbe3YsWMRQlwuNygoaOnSpURdYXt7++3bt+M4vnTpUktLy+HDh6elpcXHxzMYjNTU1OLiYjs7Oysrq8TERBzHFV4+evQoPj7e3t6eyWSOHj367bffzsnJYbPZCKEpU6bgOJ6QkMBgMBgMRlpaGklsp06dCggIsLOzQwgxmUwPD4/o6GiVXdbo2lBubq69vT1CyM7O7v333yeuuQ4aZ2xsLJ/PFwgEDAZDKBRu2LCht7dXNoa+vr5sNnv8+PFZWVn+/v7m5ubr169XGJZjx45ZWFjo46pzSEiIv78/8Xd+fr6rqytCyNXV9dChQ/Kz3bhxg8PhyK46L1u2TCgUMplMJyen1NRU4kIPyQgM3KzPnj3DcXz+/PkIIWX9iouLy87OHjhdi6XIF8Fx/OLFi0FBQVwu19HRMTY2trm5WWGGQa8N+fr6hoaGKmuToM5WMAyTySxDj56eKRcbGztt2jTKm1VJnS1YWFjIYDCampoMEpEiqVQqEokuXbqk76W0WxG5hoYGMzMzhfNHAxnP92iIHA3pW319/cDfnskYw5UXeUZ7TBcVFTV37txt27YZftV9fX379+93dHSUHWrpaSntVqTS1q1bw8LCIiMjKWxTryCzqMXDw4MkPXt4eNAdoMnIz89vaGgw2I+YZcrKyi5dunTixAl9L6Xdisjt3Lnz7t27x48fp7BNfYPMMqSkp6d/8803Fy9e9PHxuXnzJt3hDMLCwqK0tLS3t9fAP4EJCws7ePCglZWVvpfSbkUkioqKpFJpSUkJn8+nqk0DMJbbHAAlsrOzs7Oz6Y5CBTMzs3Xr1tEdhckw2M/QqQX7LAAA6kFmAQBQDzILAIB6kFkAANQzojO4hw8ffq7qxjc3N1dWVm7ZsoXuQCjzvG1BQMKIMsuVK1eI36E9J54+fdrY2DiUvorP2xYEJIwos/zzn/8MCgqiOwrDCQoKCgoKGjL7LBiGPW9b0AgZzzMW4DwLAIB6kFkAANSDzAIAoB5kFgAA9SCzAACoZ9qZJT8/X1Z1XIGPj4+xlZQHKhHF5IuLi+W3LO315DMyMkaNGsVisaytrf38/PLy8uTfLS8vDw4O3rRpk5rzDywXb6I14cmZdmaJi4traWlhs9mzZ88mHpXS29v79OnTd99995133jGekvJAHbJi8pGRkcSWNZJ68hUVFR988MEff/zR1NQUExOzcuXKvXv3IoRu3bqVlZX1+PHj06dP43IFBpTNj5SUizfRmvDkTDuzDGRubm5paTlx4kQ15zdMSXlD0rELNI6AQjF5ZDT15J2cnGJjY62srGxsbNavXy8QCIiKjiKRaOPGjTExMWrOj5SXizfFmvDkhlpmIYSHhycmJqoz59ArKa9jF+gagUGLySPjqCdfWFgo+1sqlT579kxZvXeV85OUize9mvDkDPGwXTUgHZ4MLH80JE/HkvKDFh7XsaS8PHWesD1ovXRltd9xHJfvAkLIkNXjddmC+GDF5HFt68mTbyOt68n39PQ0NTX94x//EAgENTU1Cn0fWM974Pzk5eJx9WrCk9NxK1BoCGYWWUUOHUvKKys8rktJeXnqZBZl9dKV1X5X6IIhq8frsgUHLSaP61BPnmQbaVdP/s8//yQSro+PD3FWRaHvCpll0PlJysUT1KkJT854MssQORo6ffq07KrQ119/Peg8GpWUJy88bpiS8irrpavDOKvHKyAvJo+0qic/6DbSup68jY0NUa19zZo18+fPV/lrr0HnJykXTyxlWjXhyQ2RzKKwzzLoPBqVlFe/8Lj+SsprVC9dHcZTPV6BymLySLd68rJtpEs9eTab7ezsvGjRojVr1mzdulXl93/g/MrKxf/000/EIqZVE57cEMks8r766quBEzUtKW8M9eS1qJdOztiqxysgKSaPjKCevMyYMWOkUqn6+V02v7Jy8bLUZlo14ckNwcwyKE1LyhtDPXmSeuna1X43nurxCtQpJo9oqiff2NiocOMMsUailLhG8ysrFy+rV2VaNeHJPS+ZRdOS8paWlrTXkyepl66s9vvAHhln9XgFahaTR3qrJ09S453H43377bdVVVVisVgsFhcUFOzevTshIWHMmDGDroJ8fvJy8SZWE56c/k4OawRpdU67oqKC+C+EYdioUaPee+892Vvbt2/XsaT8oIXHSQqVaxq8mledB62Xrqz2u0IXDFk9XrstKCNfTB7XrZ48+TYadLOS1Hjv7u4ODQ11cXHhcrkWFhbjx4/PyckRi8U4jp86dSogIMDOzg4hxGQyPTw8oqOjSeYnkJSLV6cmPDkdtwKFTDuzmDQ9VYyXZ8jq8TpuQVMsJk8tNWvCkzOe79HzcjT03DLa6vEKTK6YPOVMriY8OcgswFiYVjF5apliTXhykFmGLOOvHq/AtIrJU8hEa8KTM9JbG4DuTKJ6vILns5i8qf+8flCwzwIAoB5kFgAA9SCzAACoB5kFAEA9IzqDu2rVKhsbG7qjMJwbN278/vvvQ6auM4fDWbNmDY1XWIBRwXD9PAFAU0OmvPEQtn379ri4OOKme2C0Fi5cOHLkSLqjMJrMAowfhmEVFRVQEx6oA86zAACoB5kFAEA9yCwAAOpBZgEAUA8yCwCAepBZAADUg8wCAKAeZBYAAPUgswAAqAeZBQBAPcgsAADqQWYBAFAPMgsAgHqQWQAA1IPMAgCgHmQWAAD1ILMAAKgHmQUAQD3ILAAA6kFmAQBQDzILAIB6kFkAANSDzAIAoB5kFgAA9SCzAACoB5kFAEA9yCwAAOpBZgEAUA8yCwCAepBZAADUY9IdADBera2tHR0d8lPu37/f0NBA/G1ubu7i4kJHXMAEYDiO0x0DMFL79u1btmyZsndjY2OPHz9uyHiACYGjIaBUdHQ0g8EY9C0zM7PXXnvNwPEAEwKZBShlb28/a9asQZMLj8ebO3eu4UMCpgIyCyCTlJSEYZjCRHNz85iYGDabTUtIwCTAeRZApqurSyAQ9PT0yE80MzMrKyubNWsWXVEB4wf7LIAMn8+fN28ek/lf1xBtbW0DAwPpCgmYBMgsQIXExET5HVsWi/X6668rO7MLAAGOhoAKvb299vb28je2XLx4cfLkyTSGBIwf7LMAFVgsVnR0tLm5OfHS2dl50qRJ9IYEjB9kFqBaQkJCf38/QojNZr/xxhsDrxYBoACOhoBqUqnUwcHhjz/+QAhdv3597NixdEcEjB3sswDVzMzMEhMTEUJjx46FtALUQdsvErds2ULXqoEWOjs7EUIjRoyADWdaFi5cOHLkSMOvl7ajIQzDXnjhBRsbG1rWPpT87//+r7e3t5WVlb5X9Msvv/j6+nI4HP2t4unTpzdv3pwyZYr+VvFcOXPmTEVFRVBQkOFXTWdmoavPQ4zBRrKsrGzOnDl6XUVlZeXMmTPh3B9VaPyWwXkWoC59pxUwlEBmAQBQDzILAIB6kFkAANSDzAIAoN6QzSzt7e3+/v4MBuOll16iOxZUUVHBYDAaGxvpDgQhhI4ePWpvb19bW0t3IDqRSqW5ubnFxcX5+fkuLi4YhmEY9tFHH8lmKC4uHjVqFIZhQqFw9+7dhokqIyNj1KhRLBbL2traz88vLy9P/t3y8vLg4I6zmbYAACAASURBVOBNmzapuUhbW1tKSoqDgwOLxXJwcEhJSSH6lZubK5VKDdMjrQ3ZzGJjY1NdXW0MT1T8888/k5KSjOejgOO4qV/W7ezsDA0N5fP5kZGRcXFxLS0tlpaWNjY2GRkZt2/fJuaJjIxsaGgQiUTXrl1LS0szTGAVFRUffPDBH3/80dTUFBMTs3Llyr179yKEbt26lZWV9fjx49OnTysMvrJFuru7g4KC6uvrL1y40NXVVVpa2tTURPSLw+GEhYV1dXUZplNawmmCEKqoqND3WsLDw6dPn67vtZCLiYmJi4tDCN25c0cf7RtmJNXx6NGjyMhIXVqoqKhQ5zMZERGRkpIiP0UgEHz++ecIoRdffPHZs2ey6SKRqLW1VZeQNBIVFaUQVUREhPwUhNCGDRvUWWTz5s2WlpaPHz8edEV///vf582bpzIeGj8bQ3afhaDwMDTD+/e//+3m5vacPNhx7969YrFY32spLCwsKSnZuHGjwvSEhITo6Oiqqqrc3Fx9x6BMYWGh7G+pVPrs2TNbW1vtFjl06FB4eLiyxTdu3Hjq1KmioiIqotaLoZZZJBJJenq6k5OTubm5g4NDZWUlMf3p06cpKSmurq6WlpYzZ868dOnSrl27OByOj49PXl7e5MmTeTze5MmTf/vtN2L+Y8eOiUQiNpttb2+/ZMmSQVtQGUx9ff1nn32WlZWlt+5q7McffxQKhRiGESOjbBBycnJYLJaPj8+8efOsrKwcHR3ffPPNJ0+eIIRSUlKYTCZxW2dPT8/EiROJ3ysuX748KyurtLQUw7C33noLIZSfn29lZUX5p3///v1jx451cnIa+NYnn3zi6OiYmZl57do1hbc6OztXrFjh7OzM4XBEItH69euJJEjyMdBiixN6e3ubm5vT09OZTOa6deu0WOT+/fstLS2+vr7K5ndxcfH09Ny/f7+aIdGAlj0lXG/7aXFxcba2tiUlJWKxuLOzMzg4mDgamjNnjp+fX11dXXt7e1JSkkAg6OjoWLJkiZOT082bN3t6empqaqytrZcsWYLjeEtLC4PBOHXqVE9Pz61bt4jHNQ7aAkkkfX19QUFBN2/exHH84MGDyGiOhqqqquQXUTYIsbGx3t7eTU1NYrH49OnTAoHg1VdfJRYJDw8PDAyUNThx4sSEhAQcxwMDA0NCQmTTjx49amFhUVBQoH5sKo+G+vv7ORxOUlKSwnSBQED8UVJSghDy9/fv6+vD5Y6GEhMTnZ2dz50719HRUVZWNmzYsNdff518BDTd4oQ///yT+Gb5+PgQZ1XkoQFHQ4MucvnyZYRQQEDAhAkTbG1t+Xz+1KlTz549K79UTEwMh8Pp7+8nCUZP3zJ1DKl9lpaWluPHj69cuTI0NJTD4fD5fKJyRWNjY1lZ2erVqz09Pa2trVNTU9va2s6dO4cQ4nK5Y8aMYbFYvr6+EyZMIE6Stba29vf3t7W1sVgsLy+vo0ePkrSgTGZmZmxs7JgxYwzTd10MOggIISsrK1dXVw6HM2vWrBUrVhQUFDx8+FD9ZhMTEzs6OhYsWEBhqC0tLRKJRCgUKpshNDQ0JSWlurpaflfx/v37x44dW7Vq1bRp0ywsLIKDg1esWPH5558/ePCAmGHgCGixxQk2NjYSiaSlpWXNmjXz589X56fhAxchzvePHTv28OHDLS0tt2/ftrCwiIiIkB9/oVBILKWyfVoMqcxSW1uL4/jAZynW19cjhJKTk4lrkwEBAQihtrY2hdkYDAaR5sePHx8REZGUlOTv75+dnf3kyRM1W5A5e/bsjRs3li5dSmn/DEE2CAp8fHzQXyNJI+KIjMvlksyTm5vr6em5bdu26upqYkpdXR2O4yKRSDaPr68vjuN1dXUDFydGQNMtLo/NZjs7Oy9atGjNmjVbt25V58uvsAjxzIqxY8eOHz+ez+c7Ojq+/fbbT548+emnn2SLWFhYoL8GxAgNqczS29uLEGKxWArTiSlFRUXye2vx8fHK2mEwGN9+++2ZM2emT5++bdu2CRMmdHd3a9TCgQMHiouLsb8sXrwYIeTu7h4aGkpJTw2PGFvaz4gTzMzIPrc8Hu/IkSM4jiclJRGVkojHa8pnTOJvksduavqZGdSYMWOkUumg+Yt8kZ6eHh6PJ9ulQggNHz4c/XdqIwbBaJ8cOqQyy6hRoxBC169fV5ju7u6OELp69apGrc2YMSMvL6+ysvLOnTt3797VqIWjR4/KfyJl51l++OEHjWIwHtXV1Uwm08vLCyGEYRhdt+dYW1sjhFRegZo6dWpGRsb169eJuxO9vLwwDJO/ObCmpgbDMKI7g9LiM9PY2Khw4wyxxhEjRmi6iIuLS0RERGlpqSwbNjc3I4Q8PDxkc0okEvTXgBihIZVZvL29p02blpOTc/bsWeLmIuJ8vouLS3h4+K5du06ePNnT0yORSGpra4lHRg+qsrJy3bp1ra2tfX19d+/exTBs+vTpGrUwNPT29nZ2dvb09JSUlBw4cGDx4sXERdARI0bU1NTU1tb29fU1NjYSu+4IIR6Pd+PGjdbW1vb2doTQF198Qfm1IRcXFw6HI//PXJnNmzf7+/sTfwuFwoSEhN27d58/f76rq6u8vHzPnj2JiYkODg4kK1K2xcPCwjw8PFpbWxUW4fF43377bVVVlVgsFovFBQUFu3fvTkhIIDnXRrJIZmZmY2NjRkZGR0dHU1PTBx984O3tHRwcLFv2wYMHXC7X2dlZ5VDQg+pTwupC+jlrfe/evejo6GHDhtnb2y9YsGDu3LlmZmZvvfXWo0eP4uPj7e3tmUzm6NGj33777ZycHOL87pQpU3AcT0hIYDAYDAYjLS3t6tWrY8eO5XK5bDZbJBIdPHgQx/GBLcjfkUXOeK4N5ebm2tvbI4Ts7Ozef//9nTt3KhuE2NhYPp8vEAgYDIZQKNywYUNvby/RSG1tra+vL5vNHj9+fFZWlr+/v7m5+fr164uLi+3s7KysrIiraceOHbOwsCgsLFS/L+rcKRcSEuLv7y97mZ+f7+rqihBydXU9dOiQ/Jw3btzgcDjEtaGOjo5ly5YJhUImk+nk5JSamkpc6CEZAWVbfP78+Qihgf3q7u4ODQ11cXHhcrkWFhbjx4/PyckRi8U4jp86dSogIMDOzg4hxGQyPTw8oqOjyRfBcfzixYtBQUFcLtfR0TE2Nra5uVl+db6+vqGhoeRjpadvmTqGWmZ5DulpJGNjY6dNm0Z5s+TUySyFhYUMBqOpqckwIQ0klUpFItGlS5foCgDH8YaGBjMzM4XTQAPR+C0bUkdDBlZfX48pR/tlFN0Z5+FeVFTU3Llzt23bRsva+/r69u/f7+joKDvUosXWrVvDwsIiIyNpjIEcZBbteXh4kORs+ZNtgFr5+fkNDQ0G+wWzvLKyskuXLp04ccLwq5bZuXPn3bt3jx8/TmMMKkFmAYNIT0//5ptvLl686OPjc/PmTbrDUWRhYVFaWtrb22v4H86EhYUdPHjQAJUSlCkqKpJKpSUlJXw+n64Y1GEUtycAY5OdnZ2dnU13FGTMzMzU/EnOEBMVFUV3CGqBfRYAAPUgswAAqAeZBQBAPcgsAADq0XkGd9WqVaZY1/nZs2dSqXTg7x5pZKIjORDxswCoyTsE0JlZ/Pz8Ro4cSWMA2qmsrGxsbFy4cCHdgfyfM2fOmOhIDtTY2Pjrr79CZqHKmTNn6Fo1VIzX2JYtWyorK2XPwaSd6Y7kQFAxnlpQMR4AMKRAZgEAUA8yCwCAepBZAADUg8wCAKCe8WYW+UrgBB6P5+7uHhMT891339EdHQU+/PBDOzs7DMMuXLhAdyymzTirxxMGVolft26dp6cnj8ezs7MLCAg4cuSI7C2xWJyRkTF69Ggulzt69OiMjAyxWGwqJeIVGegJUwMg9Z52xWazZ8+ejeM48Uja/Px8ouhHQkKC+g+LpFZmZqZ8HS9dnD17FiFUVVWlSyNqjqRJULOus7yOjo45c+bs3btXNoWoHs/j8YhiIDIGrvFcW1u7devWL7/8Ev139TI/P7/CwsLOzs62trbMzEyEEFFpAMfxtLQ0Ho93+vTpzs7OkpISNpudlpaG43heXl5ISEhnZ6emMdD42TDefRYFxONLX3vttaqqqgULFhw7diwnJ4fuoIay1tZWXX6wr+Pi6ouLi/Pw8EhJSZFNYbFYe/bs6e7uTk5OpvGxeCKRaOPGjTExMQrT3d3do6Ki+Hy+nZ3dli1brK2tv/76a+KtEydOhISEzJo1i8/nh4aGvvLKK8QjplJTU93c3OLi4gzdBx2YTGaRYTKZn3zyCY/H27VrFw63VOmNjuXfoXq8MvIl4hFCOI7LagZhGCZfSonJZMpeGn+JeAWml1kQQvb29jNmzHj06NGtW7doKQVPbtu2bRwOZ/Lkyb/++mtMTMzkyZPVWYuySuw6BkMYtF46yRrly79jGPY8VI8n/9hQ/iEhNDc3P336dPbs2cTLNWvWlJWVXbhwQSKR/Pzzzz/++OPq1auJt0ygRLwCWo7BcM3PsyggkkJlZaXhS8Grc55lyZIlw4cP37Fjx8mTJ+fPn69sLQrnWZRVYienzkgqq5dOskb58u8Gqx6v0XkWyqvHK/vY4NpWjyegwarEE9LT08eNG9fd3S3rkfzR02uvvSaVSmUzq1MifuCq4TyLNpqbmw1fCl5NlpaWa9asmTdvXnFxsf7Wog6V9dLV8ZxUjx/0Y6OnzVdWVlZQUHDy5ElZmerly5fX1NRUV1d3dXWdP3/+woULK1eulM1v5CXiFZhqZiHKoRIFKA1ZCl47hlmLMhrVS1fHc1I9Xvax0cfm+/777zdt2nTmzBmiZDBC6M6dO/v371+7du2ECRN4PN6LL764du3avXv3EnVXkdGXiFdgkpmlr6+vqqrKxcWF+HwYshS8digpP641Leqlk4Pq8Tpuvn379n366afl5eXytVOJlCd/zmjkyJFSqfTWrVvESyMvEa/AJDPLnj172traVq9ebfhS8NpRM049VWInqZeu3RqherzWcBxPT09vamoqKCgg9kFkiMLy9+/fl00hjsVkucbIS8QrMIHM0t/fT/y36evru3379oYNG9auXRsXF5eWlmYqpeDVjFNZJXYdkdRLJ1mjQvl3qB4/cPMpKx1Porq6OicnZ/v27QwGQ/7+coSQt7f3pEmTduzYcfXqVbFY/Msvv+zYsWPKlCne3t7EssZeIl4BpeeDNYBUnbUuKCjw9vbmcrnm5ubE0DOZTKFQGB4eLn+JwfCl4FVeG8rKyiIC8Pb2vnz5srI433//fYFAgBCyt7ffvn07rrwSu44jiSuvl06yRvny7warHq/pPbgUVo8nKR2PK/mQKCsdTxi0Svwvv/xC8jW8e/fuokWLXF1dzc3Nhw0bFhcX9/vvv8saVKdEvAJ1Pht6YryZxWhReHc/JQwwkgarHq9pZqG3erwhS8erWSJeAY3fMhM4GgLGAKrHKzBw6XjjLxGvADILMG10VY83ZOl4kygRrwAyC1ABqscPymCl402lRLwCo7glARgzqB5PL1MpEa8A9lkAANSDzAIAoB5kFgAA9SCzAACoR2f1VVrWC8Bzha7qq7RdGyLutgQmZObMmbt27fLz86M7EKABurYXbfsswOQMpdL0QN/gPAsAgHqQWQAA1IPMAgCgHmQWAAD1ILMAAKgHmQUAQD3ILAAA6kFmAQBQDzILAIB6kFkAANSDzAIAoB5kFgAA9SCzAACoB5kFAEA9yCwAAOpBZgEAUA8yCwCAepBZAADUg8wCAKAeZBYAAPUgswAAqAeZBQBAPcgsAADqQWYBAFAPMgsAgHqQWQAA1IPMAgCgHmQWAAD1ILMAAKgHmQUAQD0m3QEA43X+/Plr167JT/nuu+/q6uqIv+3s7F599VU64gImAMNxnO4YgJH65ptvXn31VQ6Hg2EYQgjHceIPhJBEIklNTf3oo49oDRAYL8gsQCmJRGJvb9/V1TXwLQzDzp8/P3XqVMNHBUwCnGcBSnE4nAULFpibmw98y8nJacqUKYYPCZgKyCyATEJCQn9/v8JENpu9cOFC2ZERAAPB0RAg09/fP3z48MePHytMv3r1qo+PDy0hAZMA+yyADIPBiI+PZ7PZ8hO9vLwgrQBykFmACvHx8b29vbKXbDZ70aJFNMYDTAIcDQHVXF1dW1paiL8xDGtoaBg5ciStEQFjB/ssQLXXX39ddkA0ceJESCtAJcgsQLXExMSenh7011UhusMBJgCOhoBaRCJRXV2dmZnZ/fv3hw8fTnc4wNjBPgtQC7GrEhQUBGkFqMPYf5F45cqVVatW0R2FsZBKpb29vRwOx/CrlkgkCKF79+4FBQVR1eazZ8+kUimLxaKqwefHwoULjfyw1NgzS3t7+5kzZzIzM+kOxCg0NjZ+9tlndI3Go0ePIiMjFe5t0UVlZWVjY6ORf0OM0OHDhxsbG+mOQgVjP89SWVk5c+ZMIw/SYOgdjfr6eg8PDwob3LJlS2VlZWVlJYVtPg+CgoKCgoK2bNlCdyBk4DwLUBe1aQUMbZBZAADUg8wCAKAeZBYAAPUgswAAqDekMkt7e7u/vz+DwXjppZfojkW1devWeXp68ng8Ozu7gICAI0eO6GMtR48etbe3r62t1UfjBiOVSnNzc4uLi/Pz811cXDAMwzBM/im8xcXFo0aNwjBMKBTu3r3bkLGVl5cHBwdv2rRJNoVky4rF4oyMjNGjR3O53NGjR2dkZIjF4uLi4tzcXKlUasiw9W1IZRYbG5vq6uq5c+fSHYhaysvLs7OzW1tb6+vrw8LCkpOTjx49SvlacBw39Wv2nZ2doaGhfD4/MjIyLi6upaXF0tLSxsYmIyPj9u3bxDyRkZENDQ0ikejatWtpaWmGCezWrVtZWVmPHz8+ffq0/CCTbNmMjIyPPvro4MGDf/zxx8cff7xr166MjIzIyEgOhxMWFjboI4dNFW7cKioqNA0yPDx8+vTpeopHHcQdZSpni4qKkn9pbW09b9488kW0GA39UbObJDIzMwMDA1XOFhERkZKSIj9FIBB8/vnnCKEXX3zx2bNnsukikai1tVWXkLSDENqwYYPsJcmWHTlypPy78+bNGzlyJPH33//+d5UfAEJgYGBmZqaOMevbkNpnITCZNN9YvHfvXrFYrHK2wsJC+Ze4XM0Nk6BmN3VUWFhYUlKyceNGhekJCQnR0dFVVVW5ubn6jkFTJFsWwzAzs///pWMymbKXGzduPHXqVFFRkcHi1KuhkFkkEkl6erqTk5O5ubmDg4Psns5t27ZxOJzJkyf/+uuvMTExkydP7uzsXLFihbOzM4fDEYlE69evJ74bOTk5LBbLx8dn3rx5VlZWjo6Ob7755pMnTxBCyhZJSUlhMpnEj2h6enomTpxoZmaWmJi4fPnyrKys0tJSDMPeeustNbvQ3Nz89OnT2bNnUzsyP/74o1AoxDCssrJy165dHA7Hx8cnLy9v8uTJPB5v8uTJv/32G0n3lfURIaTQzfz8fCsrK318K/bv3z927FgnJ6eBb33yySeOjo6ZmZkK5daQkq1GMgIIoadPn6akpLi6ulpaWs6cOfPSpUuUxK+wZdesWVNWVnbhwgWJRPLzzz//+OOPq1evJt5ycXHx9PTcv38/JeulH907TSqos/8fFxdna2tbUlIiFos7OzuDg4NlR0NLliwZPnz4jh07Tp48OX/+/MTERGdn53PnznV0dJSVlQ0bNuz1118n5oyNjfX29m5qahKLxadPnxYIBK+++iqO4ySLhIeHy+/MT5w4MSEhAcfxwMDAkJAQjbqZnp4+bty47u5u3UdDQVVVFUKooqICx/ElS5Y4OTndvHmzp6enpqbG2tp6yZIlxGzKuq+sj/h/d/Po0aMWFhYFBQUaxabyaKi/v5/D4SQlJSlMFwgExB8lJSUIIX9//76+PlzuaEjZViMZgTlz5vj5+dXV1bW3tyclJQkEgo6ODjU7gv77aEiewpbt7++PiYmRfftee+01qVQqmzkmJobD4fT395OvDo6GDKGlpeX48eMrV64MDQ3lcDh8Pl/hJ3OWlpZr1qyZN2/evn37jh07tmrVqmnTpllYWAQHB69YseLzzz9/8OABMaeVlZWrqyuHw5k1a9aKFSsKCgquXLlCvgglysrKCgoKTp48yeVyKWx2UFwud8yYMSwWy9fXd8KECU1NTbK3Bnb/4cOHajabmJjY0dGxYMECaqNtaWmRSCRCoVDZDKGhoSkpKdXV1VlZWbKJ9+/fJ9lqg45AY2NjWVnZ6tWrPT09ra2tU1NT29razp07p2P8A7fs8uXLa2pqqquru7q6zp8/f+HChZUrV8rmFwqFEolE9mBQk2bymaW2thbH8UmTJqmcs66uDsdxkUgkm+Lr64vjuKxQsTzi2fTff/+9+oto5/vvv9+0adOZM2dGjRpFVZtqYjAYuJLLRkT36+vrDRuRIuKAlDzh5ubmenp6btu2rbq6mpii/oaWjQDR0+TkZOJ6dkBAAEKora1Nl+AHbtk7d+7s379/7dq1EyZM4PF4L7744tq1a/fu3dvc3EzMYGFhIeu1qTP2pyioRDxWXp1nfMiKE8umEH8Pet6UaJYoD6jmIlrYt29fWVlZeXk58ZEyHkT3aT8XTpA/5TkQj8c7cuTISy+9lJSURDxSU6MNTSA+P0VFRZGRkZTEPOiWJVKe/DmjkSNHSqXSW7duubq6or96alon8pUx+X0W4h/C9evXVc7p5eWFYZj8PWM1NTUYhnl5eQ2cubq6mslkRkREkCyCYZjWdzfhOJ6ent7U1FRQUGBsaQX91X1ixGi8g8va2hohpPIK1NSpUzMyMq5fv048tUSjDU1wd3dHCF29elX3mEm27IgRIxBC9+/fl00hjsVkuYZ4vBbRa1Nn8pnF29t72rRpOTk5Z8+e7erqKi0tVXZWXygUJiQk7N69+/z5811dXeXl5Xv27ElMTHRwcCBm6O3t7ezs7OnpKSkpOXDgwOLFi729vUkWGTFiRE1NTW1tbV9fX2NjY2dnJ9EOj8e7ceNGa2tre3u7srCrq6tzcnK2b9/OYDAwOVQPjwYGdt/W1lZZH9F/d/OLL77Qx7UhFxcXDoejzlmtzZs3+/v7E3+r3NCDrig8PHzXrl0nT57s6emRSCS1tbX9/f1hYWEeHh6tra3qx0yyZb29vSdNmrRjx46rV6+KxeJffvllx44dU6ZM8fb2JpZ98OABl8t1dnZWf3XGy9CnjDWkztWQe/fuRUdHDxs2zN7efsGCBXPnzjUzM3vrrbeysrKIs7ne3t6XL1/Gcbyjo2PZsmVCoZDJZDo5OaWmpsrO/8fGxvL5fIFAwGAwhELhhg0bent7yRepra319fVls9njx4/Pysry9/c3Nzdfv359cXGxnZ2dlZVVYmKisph/+eUXLTaHpteGcnNz7e3tEUJ2dnbDhg0jRmPKlCk4jickJDAYDAaDkZaWRtJ9ZX3EcVy+m8eOHbOwsCgsLFQ/Nly9O+VCQkL8/f1lL/Pz84kDB1dX10OHDsnPeePGDQ6HQ1wbGnSr7dy5k2QEHj16FB8fb29vz2QyR48e/fbbbz979mz+/PkIIWX9OnXqVEBAgJ2dHUKIyWR6eHhER0eTb9m7d+8uWrTI1dXV3Nx82LBhcXFxv//+u6xBX1/f0NBQleNmEteGhkJmoURsbOy0adMMsCJd6G80aOm+OpmlsLCQwWA0NTUZJCJFUqlUJBJdunTJAOtqaGgwMzMrKipSOadJZBaTPxqiUH9/P7UN1tfXY8rRfuVFAeXdp0RUVNTcuXO3bdtm+FX39fXt37/f0dFRdpylV1u3bg0LC6PqFDLtILPokYeHB0lSh4c/qik/P7+hocHAv2BGCJWVlV26dOnEiRMGWNfOnTvv3r17/PhxA6zLMCCzIIRQenr6N998c/HiRR8fn5s3b9IdjqEZefctLCxKS0t7e3sN/JuasLCwgwcPWllZ6XtFRUVFUqm0pKSEz+fre10GYxQ3LNAuOzs7Ozub7ihoY/zdNzMzW7duHd1R6EtUVBTdIVAP9lkAANSDzAIAoB5kFgAA9SCzAACoZxpncIfGb7SoMpRGg81mD6XuGAaHwyEex2XMTCOzEPeegitXrqxevXrIjMbhw4d//fXXXbt20R2IiVmzZg3dIahmGpnF+DO0IQ2Z0aisrGxsbBwy3TEYA9xiozs4zwIAoB5kFgAA9SCzAACoB5kFAEA9yCwAAOoNzcwiX1ecwOPx3N3dY2JivvvuO7qjAxqDivGmx2DPmNKOLk9RY7PZs2fPxnG8r6/v7t27+fn5RPGQhIQE+WLAJsSo6jrrTs26zh0dHXPmzNm7d69sClExnsfjEU/DlzFwXefa2tqtW7d++eWX6L8rmfn5+RUWFnZ2dra1tWVmZiKEjhw5QryVlpbG4/FOnz7d2dlZUlLCZrOJZ2Xm5eWFhIR0dnaqs154ppyxIB6G+tprr1VVVS1YsODYsWM5OTl0BdPa2mpsv5rXPSS9diouLs7DwyMlJUU2hcVi7dmzp7u7Ozk5mcZH4YlEoo0bN8rXPCS4u7tHRUXx+Xw7O7stW7ZYW1t//fXXxFsnTpwICQmZNWsWn88PDQ195ZVXiCdLpaamurm5xcXFGboPevNcZBYZJpP5ySef8Hi8Xbt24UqKeOmbYQqta0T3kPTXKagYb6ro3mlSgZKjIQWhoaEIocTERDabPWnSpCtXrkRHR0+aNKmjoyM1NXXEiBFsNtvLyysjI4Mox5udnW1ubj5u3LiIiAhLS0uhUPjGG2+0t7fjOK5skaVLlzIYDGJXXyKR+Pv7YxiWkJCwbNkyWXmwN998Ux+joWNIyjqrbHEcxxVa+OKLLywtLdV5jr86R0OvvPIKUeFQHlHXua2tzdHRkc1mX716lZguOxoadBCIZ/ePGzfuo48+mjRpEpfLnTRpBTz2+gAAIABJREFUUn19PbHskydPli5d6uLiYmFhERQU9J///Edl/DJIeV1noqLQ7t27iZd5eXlWVlZVVVVisfjMmTN8Pj8vL082s0gkUqciuEkcDT2PmWXJkiUIocrKSlOpJy+jzmjoHpLBqsdDxXioGD8EEXuhxl9PXiPkxdLVZyTV46FivOl6HjPL3bt3EUIKleiMs568pjTqhZporB4PFeNN13OXWfr6+qqqqlxcXIhSvjJGWE9eC1oUS1eJ9urx6lSMx3Gckorx8vvz8fHxWse8b9++Tz/9tLy8XP4fGEnFeOIlVIw3YXv27Glra1u9erXCdKOqJ6818l5oFxKN1eOhYrzpGuKZpb+/n/g/1tfXd/v27Q0bNqxduzYuLi4tLU1hTqOqJ6818l6oH5KRVI+HivEmzBCniXWg3bWhgoICb29vLpdrbm5ObFQmkykUCsPDw2XXLIy5nrwuo6F7SAarHg8V46FiPG2M5H52I6knb5jRMFhnoWK8PKgY/5wyzoLqemI8nYWK8SYKMgswdlAx3hRBZlHNyAuqU8sIOwsV402RaTy7n17GX1CdQsbZWagYb3JgnwUAQD3ILAAA6kFmAQBQzzTOs1RWVtIdglG4cuUKGkKj0djY2N7ePmS6YzD6uHubcqaRWWbOnEl3CEZkiI3GEOuOYRj/bS8YTtNDG4HJwTCsoqICyjADdcB5FgAA9SCzAACoB5kFAEA9yCwAAOpBZgEAUA8yCwCAepBZAADUg8wCAKAeZBYAAPUgswAAqAeZBQBAPcgsAADqQWYBAFAPMgsAgHqQWQAA1IPMAgCgHmQWAAD1ILMAAKgHmQUAQD3ILAAA6kFmAQBQDzILAIB6kFkAANSDzAIAoB5kFgAA9SCzAACoB5kFAEA9yCwAAOpBZgEAUA8yCwCAepBZAADUw3AcpzsGYKROnDjx/fffy14eP3581qxZw4cPJ156eHisW7eOptCAsWPSHQAwXgKB4MCBA/JTiouLiT8wDHvvvffoCAqYBthnAUrhOD5ixIj79+8P+m5dXZ2np6eBQwKmAs6zAKUwDEtKSuJwOAPfmjBhAqQVQAIyCyATFxcnkUgUJrLZ7IULF9IRDjAZcDQEVPD09Kyvr5efgmHY77//7uTkRFdIwPjBPgtQITk5mc1my16amZnNmDED0gogB5kFqBAfH9/b2yt7yWQyk5OTaYwHmAQ4GgKq+fv7X758mfibyWS2trba2NjQGxIwcrDPAlSTHRAxGIzQ0FBIK0AlyCxAtdjY2L6+PvTXdWi6wwEmAI6GgFoCAwN//vlnLpfb1tbG5XLpDgcYO9hnAWohztr+7W9/g7QC1ILTraKigu4xAGBIyczMpPtrjRvLLxIhv+juypUrq1ev1t9I7tixY9WqVQwGQ0/tK/h/7d17XBNnvj/wJxdy55qg4apYIGDBg3hd6SoqVgRd8VigSMS26guxKOoqXdQW9wjtClRqda23s1opxW4pUqtlKbjiuoqrK7V4Q6QQZFFrmgpySSCS+f0xv83mEBISMmQm8H3/lUwmzzzzTPgymZnM58SJEzdv3vzoo4+ss7gRY9OmTWR3ASHq/NY5PDyc7C6MEMM3klOmTLG3tx+mxvVVVVXJZDL4YJiLImfu4DgLMJU1ywqwdVBZAADEg8oCACAeVBYAAPGgsgAAiDfyK0tbW1toaCiDwXjllVfI6sOmTZto/9eBAwfI6oyugoICkUhUV1dHdkcsotFo8vLySktLi4qKvLy88BH++OOPtTOUlpZOmDCBRqOJxeJ9+/ZZs2+VlZURERHvvvuudsq2bdv8/Px4PJ6Li8v06dNPnjypfUmpVGZkZLz00ktcLvell17KyMhQKpWlpaV5eXkajcaa3bbcyK8sTk5ONTU1ixYtIrsjVIRf1ER2LyzS2dkZGRnJ5/NjYmISEhJaWlrs7e2dnJwyMjIePHiAzxMTE9PY2CiRSG7fvp2Wlmadjt2/fz8rK+uXX345f/687iBXVlbm5OTI5fKGhoaoqKhVq1YVFBTgL2VkZHz88cdHjx79+eef//jHP+bn52dkZMTExHA4nKioqK6uLuv0nBAjv7JQxKVLl3SvUExNTSW7RwghlJSUpFAoAgICCG9ZLpcvW7aM8Gb1JSQk+Pr6pqSkaKewWKwDBw50d3evWrWqr6/PCn0YkEQi2blzZ1xcXL/pPj4+y5Yt4/P5Li4uu3btcnR0/PLLL/GXvv7664ULF86bN4/P50dGRr766qtff/01Qig1NXXcuHEJCQnWXgcLjJbKwmRS5ZrAUeLgwYNKpXK4l1JSUlJWVrZz585+0xMTE2NjY6urq/Py8oa7D+YqKSnRfYphGI1Gwx/TaDQ6/T9/kkwmU/t0586d586dO336tNX6aaERW1lUKlV6erq7u7udnd3YsWOrqqq0Lz1//jwlJcXb29ve3n7u3Lk3btzIz8/ncDhBQUH79++fNm0aj8ebNm3ajz/+iM9fWFgokUjYbLZIJEpOTh6wBVLW0ULfffedWCym0WhVVVVGRiA3N5fFYgUFBS1ZssTBwcHNzW316tXt7e0pKSlMJhO/Rranp2fKlCl0Ol0qlSKE3n777aysrPLychqNtmbNmqKiIgcHh+H4qzh8+PDEiRMHvHXmoUOH3NzcMjMzb9++3e+lzs7ODRs2eHp6cjgciUSyfft2pVJp/DMwTFv84cOHz58/nz9/Pv50y5YtFRUVV69eValUf/vb37777rvNmzfjL3l5efn5+R0+fJiQ5VqD9X+q1A/+OxfCm01ISHB2di4rK1MqlZ2dnREREWFhYfhLCxYsCAkJqa+vb2trS0pKEgqFHR0dycnJ7u7u9+7d6+npqa2tdXR0TE5OxjCspaWFwWCcO3eup6fn/v37UqnUUAtGOpOWlubh4cHj8bhcrp+f3+rVqx8/fkz4Kg9hJKurqxFCFy5cwDDM0AhgGBYfHx8YGNjc3KxUKs+fPy8UCl977TUMw6Kjo+fMmaNtbcqUKYmJifjjOXPmLFy4EH9cUFAgEAiKi4vN6ltmZqZu4/r6+vo4HE5SUlK/6UKhEH9QVlaGEAoNDVWr1RiGSSQSuVyOYZhUKvX09Lx8+XJHR0dFRYWrq+vKlSuNj4C5W1wXQmjHjh0DvpSenv7yyy93d3dr10j329Prr7+u0Wi0M8fFxXE4nL6+PuOLmzNnDhV+kTgy91laWlpOnTq1cePGyMhIDofD5/O194iWyWQVFRWbN2/28/NzdHRMTU1VKBSXL19GCHG53ICAABaLFRwcPHny5ObmZoSQXC7v6+tTKBQsFsvf37+goMBIC4Zs3ry5oqJCoVD8/PPPe/fuPXv27MKFCyl4tH/AEcA5ODh4e3tzOJx58+Zt2LChuLj4p59+MrFZqVTa0dGxfPlyYnvb0tKiUqnEYrGhGSIjI1NSUmpqarKysrQTHz9+XFhYuGnTplmzZgkEgoiIiA0bNnz22WdPnjxBBkZgCFvcFBUVFcXFxWfOnNHemOLtt9+ura2tqanp6uq6cuXK1atXN27cqJ1fLBarVKqWlhYLl2sdI7Oy1NXVYRg2depU/ZfwgItVq1bh5yanT5+OEFIoFP1mYzAYGIYhhCZNmrR48eKkpKTQ0NCcnJz29nYTW9A1bty4wMBADofD4/EWL17829/+tra29ubNmwSt7rDQjoC+oKAg9O+RJFF7eztCyPj9YvLy8vz8/LKzs2tqavAp9fX1GIZJJBLtPMHBwRiG1dfX93uvdgSGsMUH9e2337777rsXL16cMGECPqWpqenw4cNbt26dPHkyj8f71a9+tXXr1oMHDz58+BCfQSAQaNea+kZmZcHvNc9isfRfwieePn1ad89txYoVhppiMBjffPPNxYsXw8LCsrOzJ0+e3N3dbVYL+ry8vJDtfET04cNLkYPiuoc89fF4vJMnT2IYlpSU1NPTgxDCD5fqFk38sfYwqj5zPzOD+uSTT44dO1ZZWenp6amdiJc83WNG48eP12g09+/fx5/ia2qkn5QyMisL/n/gzp07+i/5+PgghG7dumVWg7Nnz96/f39VVVVTU1Nra6u5LSxdulT3Kf7vcTjO9VpHTU0Nk8n09/en0WgkfqdzdHRECA16BmrmzJkZGRl37tyRyWQIIbzbuhcH1tbW0mg0f39/Qy0M7TMzIAzD0tPTm5ubi4uL8X0QLQ8PD4SQboo2/l1MW2vwsEp8ralvZFaWwMDAWbNm5ebmXrp0qaurq7y8XHsw38vLKzo6Oj8//8yZMz09PSqVqq6uzshVD1VVVdu2bZPL5Wq1urW1lUajhYWFmdUCQuiHH36oqKjo7u5WKpUlJSX79u2LjY11c3MjeLWHU29vb2dnZ09PT1lZ2ZEjR9auXevs7Ozh4VFbW1tXV6dWq2UyWWdnp3Z+Ho939+5duVze1tb2+eefD8e5IS8vLw6Hgx8fMe69994LDQ3FH4vF4sTExH379l25cqWrq6uysvLAgQNSqXTs2LFGFjTgFo+KivL19ZXL5ab3uaamJjc3d8+ePQwGQ/eabIRQYGDg1KlTP/zww1u3bimVyuvXr3/44YczZswIDAzE3/vkyRMul6u7m0Npw3Zs2FTDdG7o0aNHsbGxrq6uIpFo+fLlixYtotPpa9aswTDs6dOnK1asEIlETCbzpZdeeuedd3Jzc/FDvDNmzMAwLDExkcFgMBiMtLS0W7duTZw4kcvlstlsiURy9OjRAVt48eKFkc6sXr0aP/zJYrH8/PwyMzNVKhXhq2zuSObl5YlEIoSQi4uLq6uroRHAMCw+Pp7P5wuFQgaDIRaLd+zY0dvbi2FYXV1dcHAwm82eNGlSVlZWaGionZ3d9u3bMQwrLS11cXFxcHCQSqWFhYUCgaCkpMSs1Rn03BCGYQsXLgwNDdU+LSoq8vb2Rgh5e3sfP35cd867d+9yOBz83FBHR8f69evFYjGTyXR3d09NTe3o6Ni7d6+RERhwi+O7oobW69y5c9OnT3dxcUEIMZlMX1/f2NjY69evG/kzbG1tffPNN729ve3s7FxdXRMSEv71r39pGwwODo6MjBx03ChybmjEVpZRaPhGMj4+ftasWcPRshGmVJaSkhIGg9Hc3GyVHvWn0WgkEsmNGzessKzGxkY6nd7vWM+AKFJZRua3IetraGigGUb6aRTLkXiZvBHLli1btGhRdna29RetVqsPHz7s5uam/Z41rHbv3h0VFRUTE2OFZRECKgsxfH19jdRvX19fsjs4YhUVFTU2Nlr5F8wIoYqKihs3buC/6xlue/fubW1tPXXqlBWWRRSoLGAQ6enpX3311bVr14KCgu7du0d2d/oTCATl5eW9vb1W/k1NVFTU0aNHHRwchntBp0+f1mg0ZWVlfD5/uJdFIEpckgCoLCcnJycnh+xeGEOn07dt20Z2L4aLdX4yTjjYZwEAEA8qCwCAeFBZAADEo8pxFt37p4ChwX/iOGJGUiaTtbe3j5jVsZrnz5+T3QWEqFNZ5s6dS3YXRoiRNJJsNnskrY51cDic3/zmN2T3gjKVBbPN+zyHh4eHh4fv2rWL7I4ghFBVVdXcuXNtdCT17dq1q6qqCvZZzEWRJGw4zgIAIB5UFgAA8aCyAACIB5UFAEA8qCwAAOLZQGXRDevF8Xg8Hx+fuLi4s2fPkt07YvzhD39wcXGh0WhXr14luy82D495jo+Pp1TGs0KhSElJGTt2LIvFGjt2rG6oo9aFCxcYDIZMJrPRLGddNlBZ8LBeNps9f/58DMPUanVDQ8MHH3zQ1NS0ZMkSqVRKzVuHmOV3v/vdmTNnyO7FSKCNef7iiy+ok/Hc3d0dHh7e0NBw9epV/PapuokruGfPniUlJeHVxEaznHXZQGXpB7/D4Ouvv15dXb18+fLCwsLc3FyyOzWSWZ7QbLWMZ6QX80yRjOc9e/Y0Nzf/+c9/9vHxsbOzCwkJ+fbbb/vNs27dul//+tfap7aY5azL9iqLFpPJPHToEI/Hy8/PHzGXh1GQ5QnN1sl4RgZinqmQ8Xz8+PHo6GhnZ2dDM/zpT38aN27cvHnzdCfaXJazLhuuLAghkUg0e/bsp0+f4pksZgU266c1D9iChT3Mzs7mcDjTpk374Ycf4uLipk2bZspSjEQmW2jASGMjS+yX0Gx5xjNCyPoxz+ZmPCOEjHxyzP2QPH78uKWlJTg42NAMDQ0Nn376qW6QI872spx1WeVuu8aYeF9o7XGWfvCiUFVVhZkT2DxgWrOhFoz0ypS7GScnJ48ZM+bDDz88c+bM0qVLDS3l0qVLCKHq6mr8XUYikw0xZSQNRRobWaJuQjNmccYzZnLMsyl32NY1YMzzkDOeMcMxz+Z+SL7//nuE0PTp0ydPnuzs7Mzn82fOnHnp0iX8VbVaHR4efu/ePQzDjh49ihBqamrSvtfELGddcIdtItHpdLMCm/XTmtGwxfcihOzt7bds2bJkyZLS0tLhW8qgjEcam86SjGdEUszzEDKe0UCfnCFsPvyg7MSJE0+cONHS0vLgwQOBQLB48WJ80DIzM+Pj4w3F2tlWlrMum68seGKhp6enWYHN+mnNaHjie/VZZykDMj3S2HQUyXhGJsQ8W5LxjP79yRnC5sMPr0ycOHHSpEl8Pt/Nze2dd95pb2//61//eunSpbt3765bt87Qe20ry1mXbVcWtVpdXV3t5eXl4+NjVviuflpzW1sb4fG9A7LOUgY0hEjjQVEq4xkZjXkmK+N53LhxPB5Pd8dwzJgxCCGFQnHkyJHS0lLthVpr165FCPn4+ERGRuqujq1kOeuy7cpy4MABhUKxefNmNKTwXd205r///e8ExvcaYeJShiMy2Xik8dCWSJGMZ2RazDMpGc90On3x4sXl5eXaEvbw4UOEkK+vb0FBgW6F0h5n+ctf/oLPaVtZzrpsqbL09fXh/2rUavWDBw927NixdevWhIQE/HonswKb9dOavb29zY18HhoTl2IkMnnIjEcaG1qibkIzPsWSjGeEELkxz8OU8YwQMhLznJmZKZPJMjIyOjo6mpubP/jgg8DAwIiIiEFXysaynHURcRjYIoOe0SguLg4MDORyuXZ2dvhuIZPJFIvF0dHR/c4vmB7YPH/+fP205gFbMB7YPOhx+KysLLwDgYGB33//vaGlvP/++0KhECEkEon27NmDGY1MHvJIYgYijfGXDC1RN6EZszjjGcMwE2OezT03hP3fmGdLMp4xDDMS82zoQ2I85vnatWvh4eFcLtfNzS0+Pv7hw4f68+ifGzIxy1kXRc4N2UBloTKKbEWcdUbSahnPQ6gsIyzm2fQsZ10U+Uza0rchQBGU/aHWCIt5trksZ11QWcCIMmJinm0xy1kXVBZgBopnPKOREvNso1nOuqhyGQKwCdTPeEYjIubZRrOcdcE+CwCAeFBZAADEg8oCACAeVBYAAPGocgSXIgGm5pLJZFVVVRTpPP5bGIp0xnJVVVUymWzErI7V4B8D0tEwsu/zePPmzU2bNpHbhyHr7e2l0+kU+aWvRqPp7e3lcDjD1H5tbe2ECRPw3/VbwYsXLzQaDf7bYmCWN95444033iC3D+RXFmAraDTahQsXKBJIDigOjrMAAIgHlQUAQDyoLAAA4kFlAQAQDyoLAIB4UFkAAMSDygIAIB5UFgAA8aCyAACIB5UFAEA8qCwAAOJBZQEAEA8qCwCAeFBZAADEg8oCACAeVBYAAPGgsgAAiAeVBQBAPKgsAADiQWUBABAPKgsAgHhQWQAAxIPKAgAgHlQWAADxoLIAAIgHlQUAQDyoLAAA4kFlAQAQDyoLAIB4UFkAAMSDygIAIB4NwzCy+wAo6pNPPnn//ff7+vrwp+3t7Xw+n8lk4k8XLFjw6aefktc7QGlMsjsAqGv+/Pnr16/XndLd3Y0/oNFoYWFhZHQK2AbYZwHGBAcH3759W386g8H46aefhEKh9bsEbAIcZwHGvPHGGywWq99EBoPx6quvQlkBRkBlAcYkJCS8ePGi30Q6nZ6UlERKf4CtgG9DYBBhYWHV1dW6nxM2m61QKPh8Pom9AhQH+yxgEKtWrbKzs9M+ZTKZy5Ytg7ICjIPKAgYRGxur0Wi0TzEMk0qlJPYH2ASoLGAQzs7OCxYsYDAY+FMej7dgwQJyuwSoDyoLGNzKlStpNBpCiMViJSQk6J8tAqAfOIILBtfd3S0UClUqFZ1Ov3DhwuzZs8nuEaA62GcBg+PxeEuXLqXRaCKR6JVXXiG7O8AGUO7q/qtXr6pUKrJ7Afr7r//6ry+++GLu3Ll/+9vfyO4LGMDMmTM5HA7ZvfgPyn0bGj9+fHNzM9m9AMDGNDU1jR8/nuxe/AcVvw0dP34cAxYbN24csSO5d+9eAlszS1NTE0KoqamJrA5QGT44VEPFygKoKS0tjewuAJsBlQWYik6HTwswFXxWAADEg8oCACAeVBYAAPFGXWVpa2sLDQ1lMBjkXvGlUChSUlLGjh3LYrHGjh2bkpJCYmdwBQUFIpGorq6O7I5YSqPR5OXlxcfHe3l50Wg0Go328ccfa18tLS2dMGECjUYTi8X79u2zWq9M2eIXLlxgMBgymay0tDQvL0/3h6A2Z9RVFicnp5qamkWLFpHYh+7u7vDw8IaGhqtXr3Z1dZWXl1PhEh78FCbZvbBUZ2dnZGQkn8//4osvWlpa7O3tnZycMjIyHjx4gM8QExPT2NgokUhu375ttbNdpmzxZ8+eJSUl4dUkJiaGw+FERUV1dXVZp4eEG3WVhQr27NnT3Nz85z//2cfHx87OLiQk5NtvvyW7UygpKUmhUAQEBBDeslwuX7ZsGeHNDighIcHX11e7R8BisQ4cONDd3b1q1SptCIH1mbLF161b9+tf/1r7NDU1ddy4cQkJCdbtKWFGaWXRRluQ4vjx49HR0c7OziT2wZoOHjyoVCqtsKCSkpKysrKdO3fqTkxMTIyNja2urs7Ly7NCHwY06Bb/05/+NG7cuHnz5ulO3Llz57lz506fPj38HSTeaKksKpUqPT3d3d3dzs5u7NixVVVV+PTnz5+npKR4e3vb29vPnTv3xo0bCKH8/HwOhxMUFLR///5p06bxeLxp06b9+OOPCKHCwkKJRMJms0UiUXJyspFGDHn8+HFLS0twcPDwrrCZvvvuO7FYTKPR8JExNAK5ubksFisoKGjJkiUODg5ubm6rV69ub29HCKWkpDCZzPDwcIRQT0/PlClT6HS6VCp9++23s7KyysvLaTTamjVrEEJFRUUODg7D8Qdz+PDhiRMnuru795t+6NAhNze3zMxM/RyCzs7ODRs2eHp6cjgciUSyfft2vAga+QyYtbmRCVu8oaHh008/zcrK6jfdy8vLz8/v8OHDJq4+tZB7YbI+wq9JxyUkJDg7O5eVlSmVys7OzoiIiLCwMAzDFixYEBISUl9f39bWlpSUJBQKOzo6MAxLTk52d3e/d+9eT09PbW2to6NjcnJyS0sLg8E4d+5cT0/P/fv3pVIp3rihRgb0/fffI4SmT58+efJkZ2dnPp8/c+bMS5cuEb7K5o5kdXU1QujChQv40wFHAMOw+Pj4wMDA5uZmpVJ5/vx5oVD42muv4W+Jjo6eM2eOtsEpU6YkJiZiGDZnzpyFCxdqpxcUFAgEguLiYtP7ZsrV/X19fRwOJykpSXeiUCjEH5SVlSGEQkND1Wo1hmESiUQul2MYJpVKPT09L1++3NHRUVFR4erqunLlSuMjYNbmxgbb4mq1Ojw8/N69exiGHT16tN9qxsXFcTicvr4+CwfH+kbFPktLS8upU6c2btwYGRnJ4XD4fD6bzUYIyWSyioqKzZs3+/n5OTo6pqamKhSKy5cv4+/icrkBAQEsFis4OHjy5MnNzc1yubyvr0+hULBYLH9//4KCgkEb0Ycfops4ceKJEydaWloePHggEAgWL178008/WWUwzKA/Avh0BwcHb29vDoczb968DRs2FBcXm9V5qVTa0dGxfPlyYnvb0tKiUqnEYvGAr0ZGRqakpNTU1OjuGjx+/LiwsHDTpk2zZs0SCAQREREbNmz47LPPnjx5gs+gPwLmbm402BbPzMyMj483dHhLLBarVKqWlpahjQmJRkVlqaurwzBs6tSp/aY3NDQghFatWoWfm5w+fTpCSKFQ6LfAYDAwDJs0adLixYuTkpJCQ0NzcnLwbwGmN4LDv2xPnDhx0qRJfD7fzc3tnXfeaW9v/+tf/0rYCg8DfAT0pwcFBaF/DwK58M3B5XINzZCXl+fn55ednV1TU4NPqa+vxzBMIpFo5wkODsYwrL6+Xv/t+AiYu7mR0S1+6dKlu3fvrlu3ztB7BQKBdtVsy6ioLL29vQgh/Xss4lNOnz6tuxe3YsUKQ+0wGIxvvvnm4sWLYWFh2dnZkydPbmtrM7eRcePG8Xg87X9FhNCYMWPQYJ9OysLHltwj4rqM/LiJx+OdPHkSw7CkpKSenh6EEH4LTt2KiT/Gpw/I3M2NjG7xI0eOlJaW0v5t7dq1CCEfH5/IyEjd1THSH8oaFZVlwoQJCKE7d+70m+7j44MQunXrllmtzZ49e//+/VVVVU1NTX//+9/NbYROpy9evLi8vFz7gX748CFCyNfX16xuUERNTQ2TyfT390cI0Wg0Ei/ucnR0RAgZPwk1c+bMjIyMO3fuyGQyhJC/vz+NRtO9OLC2tpZGo+GrM6AhfGaMbPGCggLdCqU9zvKXv/wFnxO/Cxq+arZlVFSWwMDAWbNm5ebmXrp0Cb9OCT+e7+XlFR0dnZ+ff+bMmZ6eHpVKVVdXZ+Sqh6qqqm3btsnlcrVa3draSqPRvL29zW0EIZSZmSmTyTIyMjo6Opqbmz/44IPAwMCIiAji13x49Pb2dnZ29vT0lJWVHTlyZO3atfgOv4eHR21tbV1dnVqtlslknZ2d+Pw8Hu/u3btyubytrQ0h9Pnnnw/HuSEvLy8Oh6O7azCg996SGjDbAAAgAElEQVR7LzQ0FH8sFosTExP37dt35cqVrq6uysrKAwcOSKXSsWPHGlmKoc0dFRXl6+srl8v13zXkLf7kyRMul+vp6TnonJRD8BFhiw3TuaFHjx7Fxsa6urqKRKLly5cvWrSITqevWbPm6dOnK1asEIlETCbzpZdeeuedd168eLF37178EO+MGTMwDEtMTGQwGAwGY/78+RMnTuRyuWw2WyKRHD16FG98wEaM9+fatWvh4eFcLtfNzS0+Pv7hw4eEr7JZI5mXlycSiRBCLi4u77//vqERSEtLi4+P5/P5QqGQwWCIxeIdO3b09vbijdTV1QUHB7PZ7EmTJmVlZYWGhtrZ2W3fvr20tNTFxcXBwQE/m1ZYWCgQCEpKSkxfFxNPfyxcuDA0NBR/XFRU5O3tjRDy9vbuNw53797lcDj4uaGOjo7169eLxWImk+nu7p6amoqf6DEyAoY299KlSxFChtbLlC2uf24oODg4MjKSkMGxstFSWUahYRrJ+Pj4WbNmEd6scSb+8ZSUlDAYjObmZqt0qj+NRiORSG7cuEFUg42NjXQ6vd8xHX3UrCyj4tuQlTU0NNAMo8JpFAuReJm8ccuWLVu0aFF2drb1F61Wqw8fPuzm5qb9qmW53bt3R0VFxcTEENWgNUFlIZ6vr6+RWm6jR2ptRVFRUWNjozV/xIyrqKi4cePG119/TVSDe/fubW1tPXXqFFENWhlUFmCG9PT0r7766tq1a0FBQffu3SO7OwMQCATl5eW9vb1W/rlNVFTU0aNHHRwcCGnt9OnTGo2mrKyMz+cT0qD1UeUyBGATcnJycnJyyO7FIOh0+rZt28juhUWs9tPw4QP7LAAA4kFlAQAQDyoLAIB4UFkAAMSj3BHcFy9elJaW4j/rAJZ4/vz5iBlJ/GcBH330kZOTE9l9oRx8cKiGcpVFo9HU1dVRc7CMk8vlra2tISEhZHfk/+vt7bXRkdSH/zDv6tWrHA6H7L5QDj44lGO1q31NZLtX9x8/fnzcuHFk9+I/bHck9VHzAnaKoObgwHEWAADxoLIAAIgHlQUAQDyoLAAA4kFlAQAQz/YqS1FRkTYJHMfj8Xx8fOLi4s6ePUt27wjwhz/8wcXFhUajXb16ley+2CQKJsZnZGRMmDCBxWI5OjqGhITs379f+9K2bdv8/Px4PJ6Li8v06dNPnjyJd9LWE+Nt9awzm82eP38+hmH4LWmLiorw0I/ExMRB7xQ5TAg863zp0iWEUHV1tSWNjM6zzh0dHQsWLDh48CD+FE+M5/F4eACIljbJzDpmzJhx6tSp9vb2Z8+e4Tem+uMf/4i/FBISUlJS0tnZqVAoMjMzEUJ4wMD+/fsXLlzY2dk5aONw1nlY4Lcvff3116urq5cvX15YWJibm0t2p0YyC+Pfhzs9npqJ8e7u7vHx8Q4ODk5OTtu3bxcKhXhmI0LIx8dn2bJlfD7fxcVl165djo6OX375JYLEeOpgMpmHDh3i8Xj5+fnYQJlbgBAWxr8Pa3o8ZRPjS0pKtI81Gs2LFy+06fG6LyGEMAzTpgtBYjxViESi2bNnP3369P79+/qx3kYywNFAUfDmBoMPKjs7m8PhTJs27YcffoiLi5s2bZopSzGUxG5hZ3AD5qUbWaJu/DuNRqNaejw1E+O1ent7Hz58mJ6ezmQyB7w31cOHD58/fz5//nz8KSTGE8nc4yz94EWhqqpqwFhvQxngA0bBmxsMbspxluTk5DFjxnz44YdnzpxZunSpoaX0O85iKIndOFNG0lBeupEl6sa/Wy093qYT43HPnj3D/+KCgoLOnz8/4Dzp6ekvv/xyd3e3dgokxlPLw4cPDcV6D5iCrh8FP4RgcBPZ29tv2bJlyZIl+A+Rh2kpphg0L90U1EmPp2xiPM7JyQnPft+yZcvSpUt37drVb4aKiori4uIzZ87oRlNDYjxVtLa2on//+nPQWG9tCrp+FPwQgsGHwDpLMcSsvHRTkJseT9nEeC02m+3p6fnmm29u2bJl9+7duvXi22+/fffddy9evIgnBWtBYjwlqNXq6upqLy8v/LNiSRR8d3e3WS0MzRDixwk0hLx046iQHk/BxHh9AQEBGo1GW78++eSTY8eOVVZW6qesQmI8JRw4cEChUGzevNnyKHh838fcFsxlYj+HKYndSF760JZIbno8ZRPjZTJZWlqa7hR8iR4eHhiGpaenNzc3FxcX47sn/UBiPAn6+vrw/zxqtfrBgwc7duzYunVrQkJCWlqa5VHwYWFh5ubAD4GJ/TSUxG4hI3npRpbYL/6dOunxlE2M5/F433zzTXV1tVKpVCqVxcXF+/btS0xMDAgIqKmpyc3N3bNnD4PB0L2sXPteSIwnzKBnNIqLiwMDA7lcrp2dHb4NmEymWCyOjo7WPcWgH+udm5trKAP81q1b+lHw5ubAD3puKCsrC+9AYGDg999/b6if77//vlAoRAiJRKI9e/ZghpPYLRxJzHBeupEl6sa/Wy093qYT47u7uyMjI728vLhcrkAgmDRpUm5urlKpxDDs+vXrxv8qITGeMLZ7TfoovKec1dLjITHeCGpWFhv+NgSogFLp8ZAYTx1QWcCIAonxFAGVBQwRNdPjITGeIiiXCgJsBWXT4yExngpgnwUAQDyoLAAA4kFlAQAQDyoLAIB4NIxit18bP348h8Mx9Ft4KqNarvPNmzc9PDxcXV3J7ggBenp6bt68GRISgl8XC3SpVKp//OMfTU1N48ePJ7sv/0G5yvLRRx+NjJDzkWfPnj0JCQn4JfOAajZt2uTk5ER2L/6DcpUFUBaNRrtw4QJ+D0oAjIPjLAAA4kFlAQAQDyoLAIB4UFkAAMSDygIAIB5UFgAA8aCyAACIB5UFAEA8qCwAAOJBZQEAEA8qCwCAeFBZAADEg8oCACAeVBYAAPGgsgAAiAeVBQBAPKgsAADiQWUBABAPKgsAgHhQWQAAxIPKAgAgHlQWAADxoLIAAIgHlQUAQDyoLAAA4kFlAQAQDyoLAIB4UFkAAMSDygIAIB5UFgAA8ZhkdwBQl1wu7+jo0J3y+PHjxsZG/LGdnZ2XlxcZ/QI2gIZhGNl9ABT1ySefrF+/3tCr8fHxp06dsmZ/gA2Bb0PAoNjYWAaDMeBLdDr99ddft3J/gA2BygIMEolE8+bNG7C48Hi8RYsWWb9LwFZAZQHGJCUl0Wi0fhPt7Ozi4uLYbDYpXQI2AY6zAGO6urqEQmFPT4/uRDqdXlFRMW/ePLJ6BagP9lmAMXw+f8mSJUzm/zmH6OzsPGfOHLK6BGwCVBYwCKlUqrtjy2KxVq5caejILgA4+DYEBtHb2ysSiXQvbLl27dq0adNI7BKgPthnAYNgsVixsbF2dnb4U09Pz6lTp5LbJUB9UFnA4BITE/v6+hBCbDb7rbfe0j9bBEA/8G0IDE6j0YwdO/bnn39GCN25c2fixIlk9whQHeyzgMHR6XSpVIoQmjhxIpQVYAob+0XiRx991NbWRnYvRqPOzk6EkIeHx65du8juyyi1adMmJycnsnthKhv7NjR+/HgOhyMWi8nuCCXcvHnTw8PD1dXVOou7fv16cHAwh8MZjsZ7enpu3rwZEhICl/bqU6lU//jHP5qamsaPH092X0yG2ZRx48YdP36c7F5QhZVH47vvvhu+xpuamhBCTU1Nw7cI22WLgwPHWYCpFixYQHYXgM2AygIAIB5UFgAA8aCyAACIB5UFAEC8kVxZ2traQkNDGQzGK6+8QnZfBpeRkTFhwgQWi+Xo6BgSErJ//37CF1FQUCASierq6ghv2Zo0Gk1eXl5paWlRUZGXlxeNRqPRaB9//LF2htLS0gkTJtBoNLFYvG/fPuv0ysjm27Ztm5+fH4/Hc3FxmT59+smTJ/FO5uXlaTQa63TP+kZyZXFycqqpqbGVmypeuHDhgw8++Pnnn5ubm+Pi4jZu3Hjw4EFiF4GfDiS2TSvr7OyMjIzk8/kxMTEJCQktLS329vZOTk4ZGRkPHjzA54mJiWlsbJRIJLdv305LS7NOx4xsvsrKypycHLlc3tDQEBUVtWrVqoKCgpiYGA6HExUV1dXVZZ0eWtlIriwUIZfLly1bNuhs7u7u8fHxDg4OTk5O27dvFwqFZWVlxPYkKSlJoVAEBAQQ2ywyeR0tl5CQ4Ovrm5KSop3CYrEOHDjQ3d29atUq/GeTpDCy+Xx8fJYtW8bn811cXHbt2uXo6Pjll18ihFJTU8eNG5eQkEBWn4fVyK8s/e6HZn0HDx5UKpWDzlZSUqJ9rNFoXrx44ezsPJz9IpKJ62ihkpKSsrKynTt39puemJgYGxtbXV2dl5c33H0wxMjm030JIYRhmPbH4jt37jx37tzp06et1k/rIfU6PbOZctWpUqnctm2bm5sbk8kcM2aMo6NjWFhYVlYWm82eOnXqzZs3Y2Njp06dimFYR0dHamqqh4cHm8329/fPyMjo7u7Oycmxs7N7+eWXFy9ebG9vLxaL33rrrba2NrzxAd+ybt06BoMxZ84cDMNUKlVoaCiNRktMTMQwbP369drStnr16kFXsKenp7m5+be//a1QKKytrbV8NLTKy8vHjh2LELpw4QKGYXv37mWz2S+//PLHH388depULpc7derUhoYGI6tvaDX11/Hzzz+3t7cvKSkxsW+YaZeZvvrqq8HBwf0mCoVCDMMUCoWbmxubzb516xY+XSKRyOVyzMAmMzICGIa1t7evW7fOy8tLIBCEh4f/85//NHEtBt18zc3NCKF9+/Zpp0gkkoULFxpv1havwR2BlSUhIcHZ2bmsrEypVHZ2dkZERISFhWEYlpycPGbMmA8//PDMmTNLly7FMEwqlXp6el6+fLmjo6OiosLV1XXlypUYhsXHxwcGBjY3NyuVyvPnzwuFwtdeew1v3NBboqOj8T853JQpU/DKgmHYnDlzBv3o4J49e4b/fQYFBZ0/f56Q0dBVXV2trSwYhiUnJ7u7u9+7d6+np6e2ttbR0TE5ORkzuvqGVrPfOhYUFAgEguLiYtP7NugfT19fH4fDSUpK6jcdrywYhuHfPkJDQ9VqNaZTWQxtMiMjsGDBgpCQkPr6+ra2tqSkJKFQ2NHRMegqmLL50tPTX375Zby04eLi4jgcTl9fn5GWbbGyjLRvQy0tLadOndq4cWNkZCSHw+Hz+bq/cLO3t9+yZcuSJUtKS0sfP35cWFi4adOmWbNmCQSCiIiIDRs2fPbZZ0+ePEEIOTg4eHt7czicefPmbdiwobi4+KeffjL+Fss5OTmpVKqWlpYtW7YsXbrUCr8q5nK5AQEBLBYrODh48uTJ+H9UZGD1TW9WKpV2dHQsX76cwK62tLSoVCojP0aNjIxMSUmpqanJysrSThx0k+mPgEwmq6io2Lx5s5+fn6OjY2pqqkKhuHz58qA9HHTzVVRUFBcXnzlzhsvlaieKxWL8XWaNBvWNtMpSV1eHYZgpt1Osr6/HMEwikWin4Hva9fX1/eYMCgpCCDU0NJj+liFjs9menp5vvvnmli1bdu/ebc0PHIPBwAY6c6Rdfav1ZEDt7e0IId2/SX15eXl+fn7Z2dk1NTX4FLM2GT4C+JquWrUKP589ffp0hJBCoTClk0Y237fffvvuu+9evHhxwoQJum8RCATatRtJRlpl6e3tRQixWKxB58SPoun+LeGP9W/FiLfJZDJNf4vlAgICNBoNgTVryLSrT3ZHEEKITjf2ieXxeCdPnsQwLCkpCc9IGsImwz88p0+f1t23X7FihVn97Lf5Pvnkk2PHjlVWVnp6eg64RiPvBqAjrbLg/xDu3Lkz6Jz+/v40Gk33srHa2loajebv799vzpqaGiaT6e/vb+QtNBrNkqueZDJZvysv8KV4eHgMuU2iaFcfIWThalrC0dERITToGaiZM2dmZGTcuXNHJpMhc7aylo+PD0Lo1q1bpvfNyObDMCw9Pb25ubm4uBjfPelHpVKhf6/dSDLSKktgYOCsWbNyc3MvXbrU1dVVXl5+48aNAecUi8WJiYn79u27cuVKV1dXZWXlgQMHpFIpfgKlt7e3s7Ozp6enrKzsyJEja9eudXZ2NvIWDw+P2trauro6tVotk8nwO7DheDze3bt35XK5kbvh8Xi8b775prq6WqlUKpXK4uLiffv2JSYmDse1J6YYcPURQoZWs986fv755w4ODsSeTPXy8uJwOKYc0nrvvfdCQ0Pxx8a3sqEFRUdH5+fnnzlzpqenR6VS1dXV4VfKREVF+fr6yuXyfm8xsvlqampyc3P37NnDYDBoOrTvffLkCZfL1d+XsXlWOlJMEFPOhjx69Cg2NtbV1VUkEi1fvnzRokX4Did+KDcwMPD777/H5+zo6Fi/fr1YLGYyme7u7qmpqfgpgPj4eD6fLxQKGQyGWCzesWNHb2+v8bfU1dUFBwez2exJkyZlZWWFhoba2dlt374dw7DS0lIXFxcHBwc8EmxA3d3dkZGRXl5eXC5XIBBMmjQpNzdXqVRaPhpaeXl5IpEIIeTi4vL+++/j51wRQjNmzMAwLDExkcFgMBiMtLQ0I6tvaDX7rWNhYaFAICD8rPPChQtDQ0O1T4uKiry9vRFC3t7e/cbh7t27HA5He9Z5wE1mZASePn26YsUKkUjEZDJfeumld95558WLFxiGLV26FCGkv15GNt/169eN/90FBwdHRkZaPjhUMwIri+Xi4+NnzZo13Eux3DCNBimrb8ofT0lJCYPBaG5utlan+tNoNBKJ5MaNG0Q12NjYSKfT+x3T0WeLlWWkfRsiCuHXiTc0NNAMI/3MSz8kXiZvxLJlyxYtWpSdnU3K0tVq9eHDh93c3LRftSy3e/fuqKiomJgYohqkDqgsVuLr62ukwPv6+pLdQdtQVFTU2NhotV8w66qoqLhx48bXX39NVIN79+5tbW09deoUUQ1SClSW/tLT07/66qtr164FBQXdu3eP7O5YG8VXXyAQlJeX9/b2Wv+3NlFRUUePHnVwcCCktdOnT2s0mrKyMj6fT0iDVEOJixQoJScnJycnh+xekIb6q0+n07dt20Z2LyxlnZ+Gkwj2WQAAxIPKAgAgHlQWAADxoLIAAIhnY7nO7u7uDg4OkOuM++c//+np6TkyRgOPLp4xY8Yw5UbbNFvMdbaxc0N0Oj0gICAkJITsjlBCbW3tiBmNtra2f/zjHzNnznRyciK7L5SDDw7ZvTCTtS72JQYkxusaSaNhixewW40tDg4cZwEAEA8qCwCAeFBZAADEg8oCACAeVBYAAPFGfmXRzRXH8Xg8Hx+fuLi4s2fPkt07YDZIjLcNZJ+cMs+Qz7Oy2ez58+djGKZWq1tbW4uKivDkkMTERPxGhLZoFJ517ujoWLBgwcGDB7VT8MR4Ho+HB4BoaZPMrGPGjBmnTp1qb29/9uwZfm+qP/7xj/hLISEhJSUlnZ2dCoUiMzMTIYQHDOzfv3/hwoWdnZ2DNg5nnW0AfjPU119/vbq6evny5YWFhbm5uST2x2pZ66azsEvDukaQGG8rRl1l0WIymYcOHeLxePn5+Rh5P3GwTta6WSzs0vCtESTG2xKyd5rMY/m3oX4iIyMRQlKp1Cby5IcwGpZ0CSFktfR4SIw3wha/DY32ypKcnIwQqqqqon6evD5TRsPCLlktPR4S4420bIuVZfR+G9KFBxJRPE9+CAjpEkXS4yEx3raM9srS2tqKENJPqKNmnry5CO8SienxkBhvW0Z1ZVGr1dXV1V5eXniUry6K58mbiPAukZ4eD4nxtmJUV5YDBw4oFIrNmzfrv0SpPPkhI7xLJKbHQ2K8bRlFlaWvrw//P6ZWqx88eLBjx46tW7cmJCT0+0zgKJUnP2SEdIki6fGQGG9jrHKcmDBDODdUXFwcGBjI5XLt7OzwLcpkMsVicXR0tPaERVZWFpXz5C0ZDQu7ZLX0eEiMt3BwqGbkVxbCUSdP3gqjYbWVhcR4I2yxsoyib0MEomag+jChzspCYrwNgcoCbAkkxtsKqCzmoXigOrEouLKQGG8rbCwVhHTUD1QnEDVXFhLjbQLsswAAiAeVBQBAPKgsAADiQWUBABDPxhLjx48fj987B4DRBhLjh9GpU6fwX3AB65s7d25+fv7ICKi3RUbuTUNBNrbPAkhEo9EuXLgQHh5OdkeADYDjLAAA4kFlAQAQDyoLAIB4UFkAAMSDygIAIB5UFgAA8aCyAACIB5UFAEA8qCwAAOJBZQEAEA8qCwCAeFBZAADEg8oCACAeVBYAAPGgsgAAiAeVBQBAPKgsAADiQWUBABAPKgsAgHhQWQAAxIPKAgAgHlQWAADxoLIAAIgHlQUAQDyoLAAA4kFlAQAQDyoLAIB4UFkAAMSDygIAIB5UFgAA8ZhkdwBQ15UrV27fvq075ezZs/X19fhjFxeX1157jYx+ARtAwzCM7D4Aivrqq69ee+01DodDo9EQQhiG4Q8QQiqVKjU19eOPPya1g4C6oLIAg1QqlUgk6urq0n+JRqNduXJl5syZ1u8VsAlwnAUYxOFwli9fbmdnp/+Su7v7jBkzrN8lYCugsgBjEhMT+/r6+k1ks9lvvPGG9psRAPrg2xAwpq+vb8yYMb/88ku/6bdu3QoKCiKlS8AmwD4LMIbBYKxYsYLNZutO9Pf3h7ICjIPKAgaxYsWK3t5e7VM2m/3mm2+S2B9gE+DbEBict7d3S0sL/phGozU2No4fP57UHgGqg30WMLiVK1dqvxBNmTIFygoYFFQWMDipVNrT04P+fVaI7O4AGwDfhoBJJBJJfX09nU5//PjxmDFjyO4OoDrYZwEmwXdVwsPDoawAU1jjF4k3b97ctGmTFRYEhubFixcajYbFYhmZR6VSIYQePXoUHh5upW4NVW9vL51OZzLh17YDe+ONN6zwldYao9/W1nbx4sXMzEwrLAsMQVVVlUwmG/TT9vTp05iYmH7XtlDQiRMnxo8fT/0KSIoTJ07IZDIrLMh6dX3Xrl1WWxYwy65du6qqqgbdQFKp1NfX1yo9skhVVVV4eDh83gZUVVVlnQXBcRZgKpsoK4AioLIAAIgHlQUAQDyoLAAA4kFlAQAQb9RVlra2ttDQUAaD8corr5DVh5CQEJqerKwssvozBAUFBSKRqK6ujuyOWESj0eTl5ZWWlhYVFXl5eeEbQvfmvqWlpRMmTKDRaGKxeN++fVboUkZGxoQJE1gslqOjY0hIyP79+7Uvbdu2zc/Pj8fjubi4TJ8+/eTJk3gP8/LyNBqNFfpmllFXWZycnGpqahYtWkR2R/qbPXs22V0wA4Zhtv67kM7OzsjISD6fHxMTk5CQ0NLSYm9v7+TklJGR8eDBA3yemJiYxsZGiURy+/bttLQ0K/TqwoULH3zwwc8//9zc3BwXF7dx48aDBw/iL1VWVubk5Mjl8oaGhqioqFWrVhUUFMTExHA4nKioqAFvV0yiUVdZqGDs2LF9fX3Yv/3yyy/R0dG2VVmSkpIUCkVAQADhLcvl8mXLlhHerL6EhARfX9+UlBTtFBaLdeDAge7u7lWrVunfo9M63N3d4+PjHRwcnJyctm/fLhQKy8rK8Jd8fHyWLVvG5/NdXFx27drl6Oj45ZdfIoRSU1PHjRuXkJBASocNGaWVhdxLv8vLy+n0/4x8Tk7O22+/TWJ/KOXgwYNKpXK4l1JSUlJWVrZz585+0xMTE2NjY6urq/Py8oa7D4Y6pn2s0WhevHjh7Oys/xL6vyEtO3fuPHfu3OnTp63Wz0GNlsqiUqnS09Pd3d3t7OzGjh2rvRLx+fPnKSkp3t7e9vb2c+fOvXHjBkIoPz+fw+EEBQXt379/2rRpPB5v2rRpP/74I0KosLBQIpGw2WyRSJScnGykERM9ffr08uXLFPx2ZsR3330nFotpNFpVVZWRscrNzWWxWEFBQUuWLHFwcHBzc1u9enV7e3tKSgqTycSvvu/p6ZkyZQqdTpdKpQiht99+Oysrq7y8nEajrVmzpqioyMHBYTj+YA4fPjxx4kR3d3f9lw4dOuTm5paZmdkvxQ0h1NnZuWHDBk9PTw6HI5FItm/frlQqjYwAGupno7e39+HDh+np6Uwmc9u2bfozPHz48Pnz5/Pnz8efenl5+fn5HT582IwhGG7Y8Ltw4YJ1FmREQkKCs7NzWVmZUqns7OyMiIgICwvDMGzBggUhISH19fVtbW1JSUlCobCjowPDsOTkZHd393v37vX09NTW1jo6OiYnJ7e0tDAYjHPnzvX09Ny/f18qleKNG2rEFJs2bfryyy+Haa1NlJmZOWfOHLPeUl1djRC6cOECZmCs8Nni4+MDAwObm5uVSuX58+eFQuFrr72GYVh0dLTuEqdMmZKYmIg/njNnzsKFC/HHBQUFAoGguLjYrL7NmTMnMzPTyAx9fX0cDicpKanfdKFQiD/Av4CEhoaq1WoMwyQSiVwuxzBMKpV6enpevny5o6OjoqLC1dV15cqVxkdgCJ+NZ8+e4X+bQUFB58+fH3Ce9PT0l19+ubu7WzslLi6Ow+Hofsse0KCDQ5RRsc/S0tJy6tSpjRs3RkZGcjgcPp+P/6xOJpNVVFRs3rzZz8/P0dExNTVVoVBcvnwZfxeXyw0ICGCxWMHBwZMnT25ubpbL5X19fQqFgsVi+fv7FxQUDNqIcY8ePbp48eJ///d/D9+6W4f+WGlfcnBw8Pb25nA48+bN27BhQ3Fx8U8//WRis1KptKOjY/ny5cT2tqWlRaVSicViQzNERkampKTU1NTonrB7/PhxYWHhpk2bZs2aJRAIIiIiNmzY8Nlnnz158gQZGIGhfTacnJxUKlVLS8uWLVuWLl2q/wOoioqK4uLiM2fOcLlc7USxWIy/y/zxGBajorLU1dVhGDZ16tR+0xsaGhBCq1atwk83Tp8+HSGkUCj0W2AwGBiGTZo0afHixUlJSaGhoTk5Oe3t7WY1om/37t1paWm6x1xGAHysBmjh36sAAAvMSURBVHwJv+M/PmIkwjec7p+lvry8PD8/v+zs7JqaGnxKfX09hmESiUQ7T3BwMIZh2qBrLe0IDPmzwWazPT0933zzzS1btuzevVu3Xnz77bfvvvvuxYsXJ0yYoPsWgUCgXTUqGFGfaUPwW8/r338En3L69GndvbgVK1YYaofBYHzzzTcXL14MCwvLzs6ePHlyW1ubuY1oyWSy8+fPJyYmWrRuNgXfEBS5c4rxgs7j8U6ePIlhWFJSEn6nTm24tXYe/LGRRLchfza0AgICNBqNtnh98sknx44dq6ys9PT0HHB1qBMvNyoqC17d79y502+6j48PQujWrVtmtTZ79uz9+/dXVVU1NTX9/e9/H1ojCKHf//73mzZtosifmXXU1NQwmUx/f38ajUbixV2Ojo4IoUHPQM2cOTMjI+POnTv4DU3wbuteHFhbW0uj0fz9/Q21YO5nQyaT9btqBl+ch4cHhmHp6enNzc3FxcX47kk/+K258FWjglFRWQIDA2fNmpWbm3vp0qWurq7y8nL8EL2Xl1d0dHR+fv6ZM2d6enpUKlVdXZ2RCxmqqqq2bdsml8vVanVrayuNRvP29ja3EVx9fX1lZeVbb71F8KpST29vb2dnZ09PT1lZ2ZEjR9auXevs7Ozh4VFbW1tXV6dWq2UyWWdnp3Z+Ho939+5duVze1tb2+eefD8e5IS8vLw6Hgx8fMe69994LDQ3FH4vF4sTExH379l25cqWrq6uysvLAgQNSqXTs2LFGFjTgZyMqKsrX11cul/ebn8fjffPNN9XV1UqlUqlUFhcX79u3LzExMSAgoKamJjc3d8+ePQwGQ/fSbe17nzx5wuVy9fdlSDN8B4e1qHBu6NGjR7Gxsa6uriKRaPny5YsWLaLT6WvWrHn69OmKFStEIhGTyXzppZfeeeedFy9e7N27Fz/EO2PGDAzDEhMTGQwGg8GYP3/+xIkTuVwum82WSCRHjx7FGx+wEeP9SUhIyMnJGfbVNo2554by8vJEIhFCyMXFxdXVdcCxSktLwzAsPj6ez+cLhUIGgyEWi3fs2NHb24thWF1dXXBwMJvNnjRpUlZWVmhoqJ2d3fbt2zEMKy0tdXFxcXBwkEqlhYWFAoGgpKTErNUx5fTHwoULQ0NDtU+Lioq8vb0RQt7e3sePH9ed8+7duxwOBz831NHRsX79erFYzGQy3d3dU1NTOzo6DH1a8BEY8LOxdOlShJD+enV3d0dGRnp5eXG5XIFAMGnSpNzcXKVSiWHY9evXjf/9BgcHR0ZGEjI4hBgtlQUYMYSzziaKj4+fNWvWcLRshCl/PCUlJQwGo7m52So96k+j0Ugkkhs3bhDVYGNjI51O73dAZ0Bw1tmGNTQ06P/gUIv0MyNWRtZl8sYtW7Zs0aJF2dnZ1l+0Wq0+fPiwm5ub9nuW5Xbv3h0VFRUTE0NUg5aDykI8X19fI7Uc7vlIEUVFRY2Njdb5BbOuioqKGzdufP3110Q1uHfv3tbW1lOnThHVICGgsoDhkp6e/tVXX127di0oKOjevXtkd6c/gUBQXl7e29tr5Z/bREVFHT161MHBgZDWTp8+rdFoysrK+Hw+IQ0SZRSd8gRWlpOTk5OTQ3YvjKHT6QP+KseGWOd34UMA+ywAAOJBZQEAEA8qCwCAeFBZAADEs94RXOr8VgroY7PZI2YDsdnsixcv/v73vye7I1TE4XCsk3htvcqCX4lrczZt2hQSEjJomrpNO3HixA8//JCfn092R4gxGjbZkG3ZssU6C7JeZbFOpSSck5PT+PHjbbTzJqqqqpLJZCNmHUfDJhsyoq6jGRQcZwEAEA8qCwCAeFBZAADEg8oCACAeVBYAAPEoUVl087pxPB7Px8cnLi7u7NmzZPeOeG1tbStWrHBycsLvzAbIQsHEeFxlZWVERMS7777bb/qnn34aGBjI4XACAwMLCwsRJMYbh+d1s9ns+fPnYximVqsbGho++OCDpqamJUuWSKVSat49aMh+97vfdXd3P3r0yLaynEcYaibG379/Pysr65dffsEzzHRfKi0tXbNmzZ49e549e/a73/1u5cqV586dg8R4M+A3GX399derq6uXL19eWFiYm5tLdqeIdObMmbCwMB6Phyf1Wi0j3cosX69hHRlqJsZLJJKdO3fGxcXpv/Q///M/MTExv/nNb7hc7qpVqyIiIvDrjCEx3mxMJvPQoUM8Hi8/Px8zEI5lczQazZMnT+zs7LRTrJORbn2Wr9fwjQxlE+MNkcvl33///a9+9SvtlHnz5l2/fv3nn39GkBg/BCKRaPbs2U+fPr1//z4aKH/beF63fsC7JenuhugvZcBocYTQuXPnJkyYgGHY5s2baTSaVCrVzUin0WgcDkcgEAQFBTk7OzOZTKFQOHfu3KCgICcnJxaLNWPGDG1c3tdff+3n58fn83k83uzZs5uamhBCx44d43K5NBpt/PjxP/7444cffigQCFxdXSsrKy1cR0NrZCj+vV/2O9XS4ymeGK8PDzMbM2aMdgqeHotPh8R4Y7THWfrB/1arqqowA/nbhvK6Bwx4NzfBe9B7nQ+4FEPR4hiGqdVqhBC+F6ZdhDYj/e233xaJRPX19T09Pffu3XN1dZ09e3ZdXZ1Sqbx16xafz9+6dSs+5/79+//3f/+3s7OzubkZ/0PFp9+4cYPL5b733nsYhv3000+/+c1v8EQLI0y5d7+RNTIU/667XpgV0+NtPTEehxDasWOH9il+KkP37vxfffUVQujcuXP4U0iMHyI6nW4kf3vAvG79gHdL0t0N0V+K8WjxQbHZbD8/PxaLFRAQMHXqVAzDJBIJ/l/R39//X//6Fz5bamrqW2+9xefzvb29/f39W1tb8emhoaFHjhzZvXv3sWPHVq9evX//fsvPQFm4RloUSY+neGL8gAbNfoXEeLPhfzOenp4m5m9r87r1A94tSXc3RH8ppkeLD4pOp+ueUKTT6drP1hdffDFjxgxnZ2cWi3Xx4kXdz5xUKk1LS1u7du3atWvxgC4LEbhGWiSmx1M/MV6fs7MzQkg3TPL58+cIIScnJ/wpJMabR61WV1dXe3l5+fj4WB7w3t3dbVYLptBfCr51jfx7sdz9+/dXrFgxa9asu3fvdnV1zZkzR/dVDMM6OzuDgoK2b9+u+1kcsiGEpQ+K9PR4m0iM18JTpXV38R49eqSbKg2J8eY5cOCAQqHYvHkzIiLgHd/9GUK6u1lLefr0qbnR4ua6deuWRqPZsGGDm5ub7mkmXEZGRkREREVFxbNnzwiJjjYelj60+HcS0+MpmxhvhFAonDJliu43qfPnz0+bNk0oFOJPITHemL6+Pvz/g1qtfvDgwY4dO7Zu3ZqQkIBfpGR5wHtYWNgQ0t2N01/K9OnTzYoW181IN3GhHh4eCKG//vWvKpWqpqZGe5AFIfTRRx95eXnFx8eLxeIvv/zy9OnTlp9ANR6Wbij+XX+9KJIeT9nEeON27tx59uzZkpISpVJ57NixqqqqXbt2aV+FxPgBFBcXBwYGcrlcOzs7fHeOyWSKxeLo6Oh+5wL087dzc3MN5XXfunVLP+Dd3HT3QY+lD7iUAaPFMQyrq6ubOHEiQojL5YaHhzc2NmI6GekIIXxdgoODnz59umjRIgaDQafTZ8yY0dvbO3XqVBqNZmdn99vf/hbDsHXr1tnb248ZMyYtLW3FihUMBiM1NTUyMhIh5O7u/uTJEwzD8GUhhOLi4oysginnhgytEWY4/l03+x2zYnq87SbGYxh27ty56dOnu7i44H8Fvr6+sbGx2ldPnDiBH90PDAwsKirSfSMkxtsYq20JEg1fYrwuq6XHQ2K8EXDWGYxA1Pn9FyTGDzeoLGCUgsT4YQWVBVgDBdPjITF+WEFiPLAGaqbHQ2L88IF9FgAA8aCyAACIB5UFAEA86x1nqaqqstqyCNTW1iaTyWy08yaSyWRtbW0jZh1HwyYbMtOv87aUFa6ZsdFEZwBGJOtcKUfDRspdIAEA1AHHWQAAxIPKAgAgHlQWAADxoLIAAIj3/wAy7F9MAuj0bwAAAABJRU5ErkJggg==\n",
|
271 |
+
"text/plain": [
|
272 |
+
"<IPython.core.display.Image object>"
|
273 |
+
]
|
274 |
+
},
|
275 |
+
"metadata": {},
|
276 |
+
"execution_count": 21
|
277 |
+
}
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"source": [
|
283 |
+
"mkdir! drive/MyDrive/exam_model"
|
284 |
+
],
|
285 |
+
"metadata": {
|
286 |
+
"id": "Ir4oDVgg9Vjy"
|
287 |
+
},
|
288 |
+
"execution_count": null,
|
289 |
+
"outputs": []
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"source": [
|
294 |
+
"model.save('drive/MyDrive/exam_model')"
|
295 |
+
],
|
296 |
+
"metadata": {
|
297 |
+
"id": "WQzWsLM79w-H"
|
298 |
+
},
|
299 |
+
"execution_count": null,
|
300 |
+
"outputs": []
|
301 |
+
}
|
302 |
+
]
|
303 |
+
}
|