dwu commited on
Commit
a1722e4
1 Parent(s): e2be89a

initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ wizard-vicuna-13B-GPTQ-8bit-128g.no-act-order.safetensors filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - causal-lm
6
+ - llama
7
+ inference: false
8
+ ---
9
+
10
+ # Wizard-Vicuna-13B-GPTQ-8bit-128g
11
+
12
+ This repository contains 8-bit quantized models in GPTQ format of [TheBlokes's wizard-vicuna 13B in FP16 HF format](https://huggingface.co/TheBloke/wizard-vicuna-13B-HF).
13
+
14
+ These models are the result of quantization to 8-bit using [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa).
15
+
16
+ While most metrics suggest that 8-bit is only marginally better than 4-bit, I have found that the 8-bit model follows instructions significantly better. The responses from the 8-bit model feel very close to the quality of GPT-3, whereas the 4-bit model lacks some "intelligence".
17
+
18
+ With this quantized model, I can replace GPT-3 for most of my work. However, a drawback is that it requires approximately 15GB of VRAM, so you need a GPU with at least 16GB of VRAM.
19
+
20
+
21
+ The content below is straight copy and paste from TheBloke's README with the 4 bit content changed to 8 bit and referencing this model.
22
+
23
+
24
+ ## How to easily download and use this model in text-generation-webui
25
+
26
+ Open the text-generation-webui UI as normal.
27
+
28
+ 1. Click the **Model tab**.
29
+ 2. Under **Download custom model or LoRA**, enter `deetungsten/wizard-vicuna-13B-GPTQ-8bit-128g`.
30
+ 3. Click **Download**.
31
+ 4. Wait until it says it's finished downloading.
32
+ 5. Click the **Refresh** icon next to **Model** in the top left.
33
+ 6. In the **Model drop-down**: choose the model you just downloaded, `wizard-vicuna-13B-GPTQ-8bit-128g`.
34
+ 7. If you see an error in the bottom right, ignore it - it's temporary.
35
+ 8. Fill out the `GPTQ parameters` on the right: `Bits = 8`, `Groupsize = 128`, `model_type = Llama`
36
+ 9. Click **Save settings for this model** in the top right.
37
+ 10. Click **Reload the Model** in the top right.
38
+ 11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
39
+
40
+ ## Provided files
41
+
42
+ **Compatible file - wizard-vicuna-13B-GPTQ-8bit-128g.no-act-order.safetensors**
43
+
44
+ In the `main` branch - the default one - you will find `wizard-vicuna-13B-GPTQ-8bit-128g.no-act-order.safetensors`
45
+
46
+ This will work with all versions of GPTQ-for-LLaMa. It has maximum compatibility
47
+
48
+ It was created without the `--act-order` parameter. It may have slightly lower inference quality compared to the other file, but is guaranteed to work on all versions of GPTQ-for-LLaMa and text-generation-webui.
49
+
50
+ * `wizard-vicuna-13B-GPTQ-8bit-128g.no-act-order.safetensors`
51
+ * Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
52
+ * Works with text-generation-webui one-click-installers
53
+ * Parameters: Groupsize = 128g. No act-order.
54
+ * Command used to create the GPTQ:
55
+ ```
56
+ CUDA_VISIBLE_DEVICES=0 python3 llama.py wizard-vicuna-13B-HF c4 --wbits 8 --true-sequential --groupsize 128 --save_safetensors wizard-vicuna-13B-GPTQ-8bit.compat.no-act-order.safetensors
57
+ ```
58
+
59
+ # Original WizardVicuna-13B model card
60
+
61
+ Github page: https://github.com/melodysdreamj/WizardVicunaLM
62
+
63
+ # WizardVicunaLM
64
+ ### Wizard's dataset + ChatGPT's conversation extension + Vicuna's tuning method
65
+ I am a big fan of the ideas behind WizardLM and VicunaLM. I particularly like the idea of WizardLM handling the dataset itself more deeply and broadly, as well as VicunaLM overcoming the limitations of single-turn conversations by introducing multi-round conversations. As a result, I combined these two ideas to create WizardVicunaLM. This project is highly experimental and designed for proof of concept, not for actual usage.
66
+
67
+
68
+ ## Benchmark
69
+ ### Approximately 7% performance improvement over VicunaLM
70
+ ![](https://user-images.githubusercontent.com/21379657/236088663-3fa212c9-0112-4d44-9b01-f16ea093cb67.png)
71
+
72
+
73
+ ### Detail
74
+
75
+ The questions presented here are not from rigorous tests, but rather, I asked a few questions and requested GPT-4 to score them. The models compared were ChatGPT 3.5, WizardVicunaLM, VicunaLM, and WizardLM, in that order.
76
+
77
+ | | gpt3.5 | wizard-vicuna-13b | vicuna-13b | wizard-7b | link |
78
+ |-----|--------|-------------------|------------|-----------|----------|
79
+ | Q1 | 95 | 90 | 85 | 88 | [link](https://sharegpt.com/c/YdhIlby) |
80
+ | Q2 | 95 | 97 | 90 | 89 | [link](https://sharegpt.com/c/YOqOV4g) |
81
+ | Q3 | 85 | 90 | 80 | 65 | [link](https://sharegpt.com/c/uDmrcL9) |
82
+ | Q4 | 90 | 85 | 80 | 75 | [link](https://sharegpt.com/c/XBbK5MZ) |
83
+ | Q5 | 90 | 85 | 80 | 75 | [link](https://sharegpt.com/c/AQ5tgQX) |
84
+ | Q6 | 92 | 85 | 87 | 88 | [link](https://sharegpt.com/c/eVYwfIr) |
85
+ | Q7 | 95 | 90 | 85 | 92 | [link](https://sharegpt.com/c/Kqyeub4) |
86
+ | Q8 | 90 | 85 | 75 | 70 | [link](https://sharegpt.com/c/M0gIjMF) |
87
+ | Q9 | 92 | 85 | 70 | 60 | [link](https://sharegpt.com/c/fOvMtQt) |
88
+ | Q10 | 90 | 80 | 75 | 85 | [link](https://sharegpt.com/c/YYiCaUz) |
89
+ | Q11 | 90 | 85 | 75 | 65 | [link](https://sharegpt.com/c/HMkKKGU) |
90
+ | Q12 | 85 | 90 | 80 | 88 | [link](https://sharegpt.com/c/XbW6jgB) |
91
+ | Q13 | 90 | 95 | 88 | 85 | [link](https://sharegpt.com/c/JXZb7y6) |
92
+ | Q14 | 94 | 89 | 90 | 91 | [link](https://sharegpt.com/c/cTXH4IS) |
93
+ | Q15 | 90 | 85 | 88 | 87 | [link](https://sharegpt.com/c/GZiM0Yt) |
94
+ | | 91 | 88 | 82 | 80 | |
95
+
96
+
97
+ ## Principle
98
+
99
+ We adopted the approach of WizardLM, which is to extend a single problem more in-depth. However, instead of using individual instructions, we expanded it using Vicuna's conversation format and applied Vicuna's fine-tuning techniques.
100
+
101
+ Turning a single command into a rich conversation is what we've done [here](https://sharegpt.com/c/6cmxqq0).
102
+
103
+ After creating the training data, I later trained it according to the Vicuna v1.1 [training method](https://github.com/lm-sys/FastChat/blob/main/scripts/train_vicuna_13b.sh).
104
+
105
+
106
+ ## Detailed Method
107
+
108
+ First, we explore and expand various areas in the same topic using the 7K conversations created by WizardLM. However, we made it in a continuous conversation format instead of the instruction format. That is, it starts with WizardLM's instruction, and then expands into various areas in one conversation using ChatGPT 3.5.
109
+
110
+ After that, we applied the following model using Vicuna's fine-tuning format.
111
+
112
+ ## Training Process
113
+
114
+ Trained with 8 A100 GPUs for 35 hours.
115
+
116
+ ## Weights
117
+ You can see the [dataset](https://huggingface.co/datasets/junelee/wizard_vicuna_70k) we used for training and the [13b model](https://huggingface.co/junelee/wizard-vicuna-13b) in the huggingface.
118
+
119
+ ## Conclusion
120
+ If we extend the conversation to gpt4 32K, we can expect a dramatic improvement, as we can generate 8x more, more accurate and richer conversations.
121
+
122
+ ## License
123
+ The model is licensed under the LLaMA model, and the dataset is licensed under the terms of OpenAI because it uses ChatGPT. Everything else is free.
124
+
125
+ ## Author
126
+
127
+ [JUNE LEE](https://github.com/melodysdreamj) - He is active in Songdo Artificial Intelligence Study and GDG Songdo.
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "wizard_vicuna_13b_600_step",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_position_embeddings": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 40,
15
+ "num_hidden_layers": 40,
16
+ "pad_token_id": 0,
17
+ "rms_norm_eps": 1e-06,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float32",
20
+ "transformers_version": "4.28.1",
21
+ "use_cache": true,
22
+ "vocab_size": 32000
23
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.28.1"
7
+ }
huggingface-metadata.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ url: https://huggingface.co/TheBloke/wizard-vicuna-13B-GPTQ
2
+ branch: main
3
+ download date: 2023-05-11 17:51:27
4
+ sha256sum:
5
+ 9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347 tokenizer.model
6
+ f73b241fd29129c0f6f6024719fd22eeb1d0cac0dceba2c7151bd70b5e654640 wizard-vicuna-13B-GPTQ-4bit.compat.no-act-order.safetensors
quantize_config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "desc_act": false,
4
+ "group_size": 128
5
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 2048,
22
+ "pad_token": null,
23
+ "padding_side": "right",
24
+ "sp_model_kwargs": {},
25
+ "tokenizer_class": "LlamaTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
wizard-vicuna-13B-GPTQ-8bit-128g.no-act-order.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a9931a35d05c1846f6caac74c0a8c65620a7fd7dcd3697e6563de085c2ca8cb
3
+ size 13648607292