|
import torch |
|
from torch import nn |
|
import torch.optim as optim |
|
import torch.nn.functional as F |
|
from torch.utils.data.dataloader import DataLoader |
|
from torch.utils.data import Subset |
|
from torchvision import transforms |
|
from torchvision import utils as vutils |
|
|
|
import argparse |
|
import random |
|
from tqdm import tqdm |
|
|
|
from models import weights_init, Discriminator, Generator |
|
from operation import copy_G_params, load_params, get_dir |
|
from operation import ImageFolder, InfiniteSamplerWrapper |
|
from diffaug import DiffAugment |
|
|
|
|
|
from custom_data import ImageAndMaskDataFromSinGAN |
|
|
|
policy = 'color,translation' |
|
import lpips |
|
percept = lpips.PerceptualLoss(model='net-lin', net='vgg', use_gpu=True) |
|
|
|
|
|
|
|
|
|
|
|
def crop_image_by_part(image, part): |
|
hw = image.shape[2]//2 |
|
if part==0: |
|
return image[:,:,:hw,:hw] |
|
if part==1: |
|
return image[:,:,:hw,hw:] |
|
if part==2: |
|
return image[:,:,hw:,:hw] |
|
if part==3: |
|
return image[:,:,hw:,hw:] |
|
|
|
def train_d(net, data, label="real"): |
|
"""Train function of discriminator""" |
|
if label=="real": |
|
part = random.randint(0, 3) |
|
|
|
pred, [rec_all, rec_small, rec_part] = net(data, label, part=part) |
|
|
|
|
|
data_img = data[:,0:3, :, :] |
|
rec_all_img = rec_all[:, 0:3, :, :] |
|
rec_small_img = rec_small[:, 0:3, :, :] |
|
rec_part_img = rec_part[:, 0:3, :, :] |
|
|
|
|
|
|
|
err = F.relu( torch.rand_like(pred) * 0.2 + 0.8 - pred).mean() + \ |
|
percept( rec_all_img, F.interpolate(data_img, rec_all.shape[2]) ).sum() +\ |
|
percept( rec_small_img, F.interpolate(data_img, rec_small.shape[2]) ).sum() +\ |
|
percept( rec_part_img, F.interpolate(crop_image_by_part(data_img, part), rec_part.shape[2]) ).sum() |
|
err.backward() |
|
return pred.mean().item(), rec_all, rec_small, rec_part |
|
else: |
|
pred = net(data, label) |
|
err = F.relu( torch.rand_like(pred) * 0.2 + 0.8 + pred).mean() |
|
err.backward() |
|
return pred.mean().item() |
|
|
|
|
|
def train(args): |
|
|
|
|
|
total_iterations = args.iter |
|
checkpoint = args.ckpt |
|
batch_size = args.batch_size |
|
im_size = args.im_size |
|
ndf = 64 |
|
ngf = 64 |
|
nz = 256 |
|
nlr = 0.0002 |
|
nbeta1 = 0.5 |
|
use_cuda = True |
|
multi_gpu = True |
|
dataloader_workers = 8 |
|
current_iteration = 0 |
|
save_interval = 100 |
|
saved_model_folder, saved_image_folder = get_dir(args) |
|
|
|
device = torch.device("cpu") |
|
if use_cuda: |
|
device = torch.device("cuda:0") |
|
|
|
transform_list = [ |
|
transforms.Resize((int(im_size),int(im_size))), |
|
transforms.RandomHorizontalFlip(), |
|
|
|
|
|
] |
|
trans = transforms.Compose(transform_list) |
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset = ImageAndMaskDataFromSinGAN(args.path_img, args.path_mask, transform=trans) |
|
|
|
if args.num_imgs_to_train == -1 : |
|
dataset = Subset(dataset, [i for i in range(0, len(dataset))]) |
|
else: |
|
dataset = Subset(dataset, [i for i in range(0, args.num_imgs_to_train)]) |
|
|
|
|
|
dataloader = iter(DataLoader(dataset, batch_size=batch_size, shuffle=False, |
|
sampler=InfiniteSamplerWrapper(dataset), num_workers=dataloader_workers, pin_memory=True)) |
|
''' |
|
loader = MultiEpochsDataLoader(dataset, batch_size=batch_size, |
|
shuffle=True, num_workers=dataloader_workers, |
|
pin_memory=True) |
|
dataloader = CudaDataLoader(loader, 'cuda') |
|
''' |
|
|
|
|
|
|
|
netG = Generator(ngf=ngf, nz=nz, im_size=im_size, nc=args.nc) |
|
netG.apply(weights_init) |
|
|
|
netD = Discriminator(ndf=ndf, im_size=im_size, nc=args.nc) |
|
netD.apply(weights_init) |
|
|
|
netG.to(device) |
|
netD.to(device) |
|
|
|
avg_param_G = copy_G_params(netG) |
|
|
|
fixed_noise = torch.FloatTensor(8, nz).normal_(0, 1).to(device) |
|
|
|
if checkpoint != 'None': |
|
ckpt = torch.load(checkpoint) |
|
netG.load_state_dict(ckpt['g']) |
|
netD.load_state_dict(ckpt['d']) |
|
avg_param_G = ckpt['g_ema'] |
|
optimizerG.load_state_dict(ckpt['opt_g']) |
|
optimizerD.load_state_dict(ckpt['opt_d']) |
|
current_iteration = int(checkpoint.split('_')[-1].split('.')[0]) |
|
del ckpt |
|
|
|
if multi_gpu: |
|
netG = nn.DataParallel(netG.to(device)) |
|
netD = nn.DataParallel(netD.to(device)) |
|
|
|
optimizerG = optim.Adam(netG.parameters(), lr=nlr, betas=(nbeta1, 0.999)) |
|
optimizerD = optim.Adam(netD.parameters(), lr=nlr, betas=(nbeta1, 0.999)) |
|
|
|
for iteration in tqdm(range(current_iteration, total_iterations+1)): |
|
real_image = next(dataloader) |
|
real_image = real_image.to(device) |
|
current_batch_size = real_image.size(0) |
|
noise = torch.Tensor(current_batch_size, nz).normal_(0, 1).to(device) |
|
|
|
fake_images = netG(noise) |
|
|
|
real_image = DiffAugment(real_image, policy=policy) |
|
fake_images = [DiffAugment(fake, policy=policy) for fake in fake_images] |
|
|
|
|
|
netD.zero_grad() |
|
|
|
err_dr, rec_img_all, rec_img_small, rec_img_part = train_d(netD, real_image, label="real") |
|
train_d(netD, [fi.detach() for fi in fake_images], label="fake") |
|
optimizerD.step() |
|
|
|
|
|
netG.zero_grad() |
|
pred_g = netD(fake_images, "fake") |
|
err_g = -pred_g.mean() |
|
|
|
err_g.backward() |
|
optimizerG.step() |
|
|
|
for p, avg_p in zip(netG.parameters(), avg_param_G): |
|
avg_p.mul_(0.999).add_(0.001 * p.data) |
|
|
|
if iteration % 100 == 0: |
|
print("GAN: loss d: %.5f loss g: %.5f"%(err_dr, -err_g.item())) |
|
|
|
if iteration % (save_interval*10) == 0: |
|
backup_para = copy_G_params(netG) |
|
load_params(netG, avg_param_G) |
|
with torch.no_grad(): |
|
vutils.save_image(netG(fixed_noise)[0].add(1).mul(0.5), saved_image_folder+'/%d.png'%iteration, nrow=4) |
|
vutils.save_image( torch.cat([ |
|
F.interpolate(real_image, 128), |
|
rec_img_all, rec_img_small, |
|
rec_img_part]).add(1).mul(0.5), saved_image_folder+'/rec_%d.png'%iteration ) |
|
load_params(netG, backup_para) |
|
|
|
if iteration % (save_interval*50) == 0 or iteration == total_iterations: |
|
backup_para = copy_G_params(netG) |
|
load_params(netG, avg_param_G) |
|
torch.save({'g':netG.state_dict(),'d':netD.state_dict()}, saved_model_folder+'/%d.pth'%iteration) |
|
load_params(netG, backup_para) |
|
torch.save({'g':netG.state_dict(), |
|
'd':netD.state_dict(), |
|
'g_ema': avg_param_G, |
|
'opt_g': optimizerG.state_dict(), |
|
'opt_d': optimizerD.state_dict()}, saved_model_folder+'/all_%d.pth'%iteration) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description='region gan') |
|
|
|
parser.add_argument('--path', type=str, default='../lmdbs/art_landscape_1k', help='path of resource dataset, should be a folder that has one or many sub image folders inside') |
|
parser.add_argument('--cuda', type=int, default=1, help='index of gpu to use') |
|
parser.add_argument('--name', type=str, default='test_4ch_num_img_5', help='experiment name') |
|
parser.add_argument('--iter', type=int, default=50000, help='number of iterations') |
|
parser.add_argument('--start_iter', type=int, default=0, help='the iteration to start training') |
|
parser.add_argument('--batch_size', type=int, default=8, help='mini batch number of images') |
|
parser.add_argument('--im_size', type=int, default=256, help='image resolution') |
|
parser.add_argument('--ckpt', type=str, default='None', help='checkpoint weight path if have one') |
|
|
|
parser.add_argument("--nc", type=int, default=4, help="number of channels in input images") |
|
parser.add_argument("--path_img", default="/work/vajira/DATA/kvasir_seg/real_images_root/real_images", help="image directory") |
|
parser.add_argument("--path_mask", default="/work/vajira/DATA/kvasir_seg/real_masks_root/real_masks", help = "mask directory") |
|
parser.add_argument("--num_imgs_to_train", default=5, type=int, help="number of samples to train. -1 for use all") |
|
|
|
|
|
args = parser.parse_args() |
|
print(args) |
|
|
|
train(args) |
|
|