Upload train_digit_classifier.py
Browse files- train_digit_classifier.py +300 -0
train_digit_classifier.py
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
train_digit_classifier.py
|
3 |
+
|
4 |
+
A fully documented training script for a convolutional neural network (CNN)
|
5 |
+
classifier trained on MNIST + EMNIST digits + blank images.
|
6 |
+
|
7 |
+
Author: Deep Shah
|
8 |
+
License: GPL-3.0
|
9 |
+
"""
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.optim as optim
|
15 |
+
import torchvision
|
16 |
+
import torchvision.transforms as transforms
|
17 |
+
from torch.utils.data import DataLoader, Dataset, TensorDataset
|
18 |
+
from sklearn.model_selection import train_test_split
|
19 |
+
import os
|
20 |
+
|
21 |
+
# ----------------------------------------------------------------------
|
22 |
+
# 1. Reproducibility Setup
|
23 |
+
# ----------------------------------------------------------------------
|
24 |
+
|
25 |
+
# Set fixed seeds to make results deterministic (important for debugging and reproducibility)
|
26 |
+
torch.manual_seed(42)
|
27 |
+
np.random.seed(42)
|
28 |
+
|
29 |
+
# ----------------------------------------------------------------------
|
30 |
+
# 2. Device Selection
|
31 |
+
# ----------------------------------------------------------------------
|
32 |
+
|
33 |
+
# Automatically use GPU if available; fallback to CPU otherwise
|
34 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
35 |
+
print(f"[INFO] Using device: {device}")
|
36 |
+
|
37 |
+
# ----------------------------------------------------------------------
|
38 |
+
# 3. EMNIST Loader (Custom Dataset class)
|
39 |
+
# ----------------------------------------------------------------------
|
40 |
+
|
41 |
+
class EMNISTDigitsDataset(Dataset):
|
42 |
+
"""
|
43 |
+
A PyTorch-compatible wrapper for the EMNIST digits dataset loaded via TensorFlow Datasets.
|
44 |
+
Ensures data is shaped correctly and optionally transformed.
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(self, split="train", transform=None):
|
48 |
+
import tensorflow_datasets as tfds
|
49 |
+
ds = tfds.load("emnist/digits", split=split, as_supervised=True)
|
50 |
+
self.images = []
|
51 |
+
self.labels = []
|
52 |
+
for image, label in tfds.as_numpy(ds):
|
53 |
+
if image.ndim == 2:
|
54 |
+
image = image[..., np.newaxis]
|
55 |
+
elif image.ndim == 4 and image.shape[0] == 1:
|
56 |
+
image = image[0]
|
57 |
+
self.images.append(image)
|
58 |
+
self.labels.append(label)
|
59 |
+
self.images = np.array(self.images, dtype=np.float32) / 255.0 # Normalize to [0,1]
|
60 |
+
self.labels = np.array(self.labels, dtype=np.int64)
|
61 |
+
self.transform = transform
|
62 |
+
|
63 |
+
def __len__(self):
|
64 |
+
return len(self.images)
|
65 |
+
|
66 |
+
def __getitem__(self, idx):
|
67 |
+
image = self.images[idx]
|
68 |
+
label = self.labels[idx]
|
69 |
+
if self.transform:
|
70 |
+
image = self.transform(torch.tensor(image.transpose(2, 0, 1))).transpose(1, 2).numpy()
|
71 |
+
return torch.tensor(image.transpose(2, 0, 1), dtype=torch.float32), torch.tensor(label, dtype=torch.long)
|
72 |
+
|
73 |
+
# ----------------------------------------------------------------------
|
74 |
+
# 4. Data Augmentation Strategy
|
75 |
+
# ----------------------------------------------------------------------
|
76 |
+
|
77 |
+
# We use a modest augmentation strategy to improve generalization
|
78 |
+
train_transform = transforms.Compose([
|
79 |
+
transforms.ToPILImage(),
|
80 |
+
transforms.RandomRotation(10), # Handle slanted handwriting
|
81 |
+
transforms.RandomAffine(degrees=0, scale=(0.9, 1.1), translate=(0.1, 0.1)), # Simulate slight distortions
|
82 |
+
transforms.ToTensor()
|
83 |
+
])
|
84 |
+
|
85 |
+
# ----------------------------------------------------------------------
|
86 |
+
# 5. Load Datasets (MNIST + EMNIST + Blank)
|
87 |
+
# ----------------------------------------------------------------------
|
88 |
+
|
89 |
+
# Load MNIST
|
90 |
+
mnist_dataset = torchvision.datasets.MNIST(root="./data", train=True, download=True)
|
91 |
+
mnist_images = mnist_dataset.data.numpy().astype(np.float32) / 255.0
|
92 |
+
mnist_images = mnist_images[..., np.newaxis]
|
93 |
+
mnist_labels = mnist_dataset.targets.numpy()
|
94 |
+
|
95 |
+
# Load EMNIST
|
96 |
+
emnist_dataset = EMNISTDigitsDataset(split="train", transform=None)
|
97 |
+
emnist_images = emnist_dataset.images
|
98 |
+
emnist_labels = emnist_dataset.labels
|
99 |
+
|
100 |
+
# Create blank (all-black) 28x28 images, labeled with class 10
|
101 |
+
x_blank = np.zeros((5000, 28, 28, 1), dtype=np.float32)
|
102 |
+
y_blank = np.full((5000,), 10, dtype=np.int64)
|
103 |
+
|
104 |
+
# Combine all datasets
|
105 |
+
x_combined = np.concatenate([mnist_images, emnist_images, x_blank], axis=0)
|
106 |
+
y_combined = np.concatenate([mnist_labels, emnist_labels, y_blank], axis=0)
|
107 |
+
|
108 |
+
# Shuffle for randomness
|
109 |
+
indices = np.random.permutation(len(x_combined))
|
110 |
+
x_combined = x_combined[indices]
|
111 |
+
y_combined = y_combined[indices]
|
112 |
+
|
113 |
+
# ----------------------------------------------------------------------
|
114 |
+
# 6. Train/Validation Split
|
115 |
+
# ----------------------------------------------------------------------
|
116 |
+
|
117 |
+
x_train, x_val, y_train, y_val = train_test_split(
|
118 |
+
x_combined, y_combined, test_size=0.1, random_state=42
|
119 |
+
)
|
120 |
+
|
121 |
+
# Convert to PyTorch format
|
122 |
+
train_dataset = TensorDataset(
|
123 |
+
torch.tensor(x_train.transpose(0, 3, 1, 2), dtype=torch.float32),
|
124 |
+
torch.tensor(y_train, dtype=torch.long)
|
125 |
+
)
|
126 |
+
val_dataset = TensorDataset(
|
127 |
+
torch.tensor(x_val.transpose(0, 3, 1, 2), dtype=torch.float32),
|
128 |
+
torch.tensor(y_val, dtype=torch.long)
|
129 |
+
)
|
130 |
+
|
131 |
+
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
132 |
+
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)
|
133 |
+
|
134 |
+
# ----------------------------------------------------------------------
|
135 |
+
# 7. CNN Architecture
|
136 |
+
# ----------------------------------------------------------------------
|
137 |
+
|
138 |
+
class CNN(nn.Module):
|
139 |
+
"""
|
140 |
+
This CNN is designed to:
|
141 |
+
- Use 3 convolutional blocks with increasing depth (32 -> 64 -> 128)
|
142 |
+
- Use BatchNorm to stabilize training
|
143 |
+
- Use Dropout to prevent overfitting
|
144 |
+
- Flatten and use 2 dense layers to classify
|
145 |
+
"""
|
146 |
+
|
147 |
+
def __init__(self):
|
148 |
+
super().__init__()
|
149 |
+
self.features = nn.Sequential(
|
150 |
+
nn.Conv2d(1, 32, 3, padding=1), # Small receptive field
|
151 |
+
nn.BatchNorm2d(32),
|
152 |
+
nn.ReLU(),
|
153 |
+
nn.Conv2d(32, 64, 3, padding=1), # Slightly deeper
|
154 |
+
nn.BatchNorm2d(64),
|
155 |
+
nn.ReLU(),
|
156 |
+
nn.MaxPool2d(2, 2),
|
157 |
+
nn.Dropout(0.1), # Helps regularize
|
158 |
+
nn.Conv2d(64, 128, 3, padding=1),
|
159 |
+
nn.BatchNorm2d(128),
|
160 |
+
nn.ReLU(),
|
161 |
+
nn.MaxPool2d(2, 2),
|
162 |
+
nn.Dropout(0.1)
|
163 |
+
)
|
164 |
+
self.classifier = nn.Sequential(
|
165 |
+
nn.Flatten(),
|
166 |
+
nn.Linear(128 * 7 * 7, 128),
|
167 |
+
nn.BatchNorm1d(128),
|
168 |
+
nn.ReLU(),
|
169 |
+
nn.Dropout(0.2),
|
170 |
+
nn.Linear(128, 11) # 0-9 digits + blank (class 10)
|
171 |
+
)
|
172 |
+
|
173 |
+
def forward(self, x):
|
174 |
+
return self.classifier(self.features(x))
|
175 |
+
|
176 |
+
model = CNN().to(device)
|
177 |
+
|
178 |
+
# ----------------------------------------------------------------------
|
179 |
+
# 8. Training Configuration
|
180 |
+
# ----------------------------------------------------------------------
|
181 |
+
|
182 |
+
# CrossEntropyLoss is standard for multi-class classification
|
183 |
+
criterion = nn.CrossEntropyLoss()
|
184 |
+
|
185 |
+
# Adam is used because it's efficient for noisy gradients & fast convergence
|
186 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
187 |
+
|
188 |
+
# ReduceLROnPlateau reduces LR when validation loss plateaus (adaptive control)
|
189 |
+
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.2, patience=2, min_lr=1e-6)
|
190 |
+
|
191 |
+
# Early stopping is used to prevent overfitting and wasted training
|
192 |
+
patience = 5
|
193 |
+
patience_counter = 0
|
194 |
+
best_val_loss = float("inf")
|
195 |
+
best_model_state = None
|
196 |
+
|
197 |
+
# ----------------------------------------------------------------------
|
198 |
+
# 9. Training Loop
|
199 |
+
# ----------------------------------------------------------------------
|
200 |
+
|
201 |
+
for epoch in range(1, 51):
|
202 |
+
model.train()
|
203 |
+
running_loss = 0
|
204 |
+
correct = 0
|
205 |
+
total = 0
|
206 |
+
|
207 |
+
for images, labels in train_loader:
|
208 |
+
images, labels = images.to(device), labels.to(device)
|
209 |
+
|
210 |
+
# Apply data augmentation on CPU
|
211 |
+
for i in range(len(images)):
|
212 |
+
images[i] = train_transform(images[i].cpu()).to(device)
|
213 |
+
|
214 |
+
optimizer.zero_grad()
|
215 |
+
outputs = model(images)
|
216 |
+
loss = criterion(outputs, labels)
|
217 |
+
loss.backward()
|
218 |
+
optimizer.step()
|
219 |
+
|
220 |
+
running_loss += loss.item()
|
221 |
+
_, predicted = torch.max(outputs, 1)
|
222 |
+
total += labels.size(0)
|
223 |
+
correct += (predicted == labels).sum().item()
|
224 |
+
|
225 |
+
train_acc = 100 * correct / total
|
226 |
+
train_loss = running_loss / len(train_loader)
|
227 |
+
|
228 |
+
# ----------------
|
229 |
+
# Validation phase
|
230 |
+
# ----------------
|
231 |
+
model.eval()
|
232 |
+
val_loss = 0
|
233 |
+
val_correct = 0
|
234 |
+
val_total = 0
|
235 |
+
with torch.no_grad():
|
236 |
+
for images, labels in val_loader:
|
237 |
+
images, labels = images.to(device), labels.to(device)
|
238 |
+
outputs = model(images)
|
239 |
+
loss = criterion(outputs, labels)
|
240 |
+
val_loss += loss.item()
|
241 |
+
_, predicted = torch.max(outputs, 1)
|
242 |
+
val_total += labels.size(0)
|
243 |
+
val_correct += (predicted == labels).sum().item()
|
244 |
+
|
245 |
+
val_acc = 100 * val_correct / val_total
|
246 |
+
val_loss /= len(val_loader)
|
247 |
+
|
248 |
+
print(f"Epoch {epoch:02d}: Train Loss={train_loss:.4f}, Train Acc={train_acc:.2f}%, "
|
249 |
+
f"Val Loss={val_loss:.4f}, Val Acc={val_acc:.2f}%")
|
250 |
+
|
251 |
+
# Adjust learning rate if plateau
|
252 |
+
scheduler.step(val_loss)
|
253 |
+
|
254 |
+
# Save best model
|
255 |
+
if val_loss < best_val_loss:
|
256 |
+
best_val_loss = val_loss
|
257 |
+
best_model_state = model.state_dict()
|
258 |
+
patience_counter = 0
|
259 |
+
else:
|
260 |
+
patience_counter += 1
|
261 |
+
if patience_counter >= patience:
|
262 |
+
print("[INFO] Early stopping triggered.")
|
263 |
+
break
|
264 |
+
|
265 |
+
# Load best model
|
266 |
+
model.load_state_dict(best_model_state)
|
267 |
+
|
268 |
+
# Save PyTorch weights
|
269 |
+
torch.save(model.state_dict(), "mnist_emnist_blank_cnn_v1.pth")
|
270 |
+
print("[INFO] Model weights saved as mnist_emnist_blank_cnn_v1.pth")
|
271 |
+
|
272 |
+
# Convert to TorchScript for deployment (required by Hugging Face Inference API)
|
273 |
+
model.eval()
|
274 |
+
example_input = torch.randn(1, 1, 28, 28).to(device)
|
275 |
+
scripted_model = torch.jit.trace(model, example_input)
|
276 |
+
scripted_model.save("mnist_emnist_blank_cnn_v1.pt")
|
277 |
+
print("[INFO] TorchScript model saved as mnist_emnist_blank_cnn_v1.pt")
|
278 |
+
|
279 |
+
# ONNX export
|
280 |
+
# We move to CPU just for export (then restore the device).
|
281 |
+
prev_device = next(model.parameters()).device
|
282 |
+
try:
|
283 |
+
model_cpu = model.to("cpu").eval()
|
284 |
+
dummy = torch.randn(1, 1, 28, 28) # match input shape
|
285 |
+
|
286 |
+
onnx_path = "mnist_emnist_blank_cnn_v1.onnx"
|
287 |
+
torch.onnx.export(
|
288 |
+
model_cpu,
|
289 |
+
dummy,
|
290 |
+
onnx_path,
|
291 |
+
export_params=True,
|
292 |
+
opset_version=13,
|
293 |
+
do_constant_folding=True,
|
294 |
+
input_names=["input"],
|
295 |
+
output_names=["logits"],
|
296 |
+
dynamic_axes={"input": {0: "batch_size"}, "logits": {0: "batch_size"}},
|
297 |
+
)
|
298 |
+
print(f"[INFO] ONNX model saved as {onnx_path}")
|
299 |
+
finally:
|
300 |
+
model.to(prev_device).eval() # restore original device
|