sjrhuschlee Tuana commited on
Commit
69fafbf
1 Parent(s): 96785db

Updating readme to reflect usage in Haystack (#3)

Browse files

- Updating readme to reflect usage in Haystack (653be732b3f136e6a54d0327cb5355d4db45111d)


Co-authored-by: Tuana Celik <Tuana@users.noreply.huggingface.co>

Files changed (1) hide show
  1. README.md +29 -37
README.md CHANGED
@@ -35,7 +35,7 @@ model-index:
35
  **Downstream-task:** Extractive QA
36
  **Training data:** SQuAD 2.0
37
  **Eval data:** SQuAD 2.0
38
- **Code:** See [example](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py) in [FARM](https://github.com/deepset-ai/FARM/blob/master/examples/question_answering.py)
39
  **Infrastructure**: 1x Tesla v100
40
 
41
  ## Hyperparameters
@@ -70,6 +70,14 @@ Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://works
70
 
71
  ## Usage
72
 
 
 
 
 
 
 
 
 
73
  ### In Transformers
74
  ```python
75
  from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
@@ -89,34 +97,6 @@ model = AutoModelForQuestionAnswering.from_pretrained(model_name)
89
  tokenizer = AutoTokenizer.from_pretrained(model_name)
90
  ```
91
 
92
- ### In FARM
93
-
94
- ```python
95
- from farm.modeling.adaptive_model import AdaptiveModel
96
- from farm.modeling.tokenization import Tokenizer
97
- from farm.infer import Inferencer
98
-
99
- model_name = "deepset/minilm-uncased-squad2"
100
-
101
- # a) Get predictions
102
- nlp = Inferencer.load(model_name, task_type="question_answering")
103
- QA_input = [{"questions": ["Why is model conversion important?"],
104
- "text": "The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks."}]
105
- res = nlp.inference_from_dicts(dicts=QA_input)
106
-
107
- # b) Load model & tokenizer
108
- model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
109
- tokenizer = Tokenizer.load(model_name)
110
- ```
111
-
112
- ### In haystack
113
- For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [haystack](https://github.com/deepset-ai/haystack/):
114
- ```python
115
- reader = FARMReader(model_name_or_path="deepset/minilm-uncased-squad2")
116
- # or
117
- reader = TransformersReader(model="deepset/minilm-uncased-squad2",tokenizer="deepset/minilm-uncased-squad2")
118
- ```
119
-
120
 
121
  ## Authors
122
  **Vaishali Pal:** vaishali.pal@deepset.ai
@@ -126,17 +106,29 @@ reader = TransformersReader(model="deepset/minilm-uncased-squad2",tokenizer="dee
126
  **Tanay Soni:** tanay.soni@deepset.ai
127
 
128
  ## About us
129
- ![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo)
130
- We bring NLP to the industry via open source!
131
- Our focus: Industry specific language models & large scale QA systems.
 
 
 
 
 
 
 
 
132
 
133
- Some of our work:
 
134
  - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
135
  - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
136
- - [FARM](https://github.com/deepset-ai/FARM)
137
- - [Haystack](https://github.com/deepset-ai/haystack/)
138
 
139
- Get in touch:
140
- [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
 
 
 
 
 
141
 
142
  By the way: [we're hiring!](http://www.deepset.ai/jobs)
 
35
  **Downstream-task:** Extractive QA
36
  **Training data:** SQuAD 2.0
37
  **Eval data:** SQuAD 2.0
38
+ **Code:** See an [example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/01_basic_qa_pipeline)
39
  **Infrastructure**: 1x Tesla v100
40
 
41
  ## Hyperparameters
 
70
 
71
  ## Usage
72
 
73
+ ### In Haystack
74
+ For doing QA at scale (i.e. many docs instead of single paragraph), you can load the model also in [Haystack](https://github.com/deepset-ai/haystack/):
75
+ ```python
76
+ reader = FARMReader(model_name_or_path="deepset/minilm-uncased-squad2")
77
+ # or
78
+ reader = TransformersReader(model="deepset/minilm-uncased-squad2",tokenizer="deepset/minilm-uncased-squad2")
79
+ ```
80
+
81
  ### In Transformers
82
  ```python
83
  from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
 
97
  tokenizer = AutoTokenizer.from_pretrained(model_name)
98
  ```
99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
  ## Authors
102
  **Vaishali Pal:** vaishali.pal@deepset.ai
 
106
  **Tanay Soni:** tanay.soni@deepset.ai
107
 
108
  ## About us
109
+ <div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
110
+ <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
111
+ <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
112
+ </div>
113
+ <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
114
+ <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
115
+ </div>
116
+ </div>
117
+
118
+ [deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
119
+
120
 
121
+ Some of our other work:
122
+ - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
123
  - [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
124
  - [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
 
 
125
 
126
+ ## Get in touch and join the Haystack community
127
+
128
+ <p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
129
+
130
+ We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
131
+
132
+ [Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
133
 
134
  By the way: [we're hiring!](http://www.deepset.ai/jobs)