|
--- |
|
language: en |
|
license: cc-by-4.0 |
|
base_model: google/flan-t5-xl |
|
tags: |
|
- question-answering |
|
- flan |
|
- flan-t5 |
|
- squad |
|
- squad_v2 |
|
datasets: |
|
- squad_v2 |
|
- squad |
|
model-index: |
|
- name: deepset/flan-t5-xl-squad2 |
|
results: |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_v2 |
|
type: squad_v2 |
|
config: squad_v2 |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 88.790 |
|
name: Exact Match |
|
- type: f1 |
|
value: 91.617 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad |
|
type: squad |
|
config: plain_text |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 90.331 |
|
name: Exact Match |
|
- type: f1 |
|
value: 95.722 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: adversarial_qa |
|
type: adversarial_qa |
|
config: adversarialQA |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 54.367 |
|
name: Exact Match |
|
- type: f1 |
|
value: 68.055 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squad_adversarial |
|
type: squad_adversarial |
|
config: AddOneSent |
|
split: validation |
|
metrics: |
|
- type: exact_match |
|
value: 87.241 |
|
name: Exact Match |
|
- type: f1 |
|
value: 92.894 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts amazon |
|
type: squadshifts |
|
config: amazon |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 77.602 |
|
name: Exact Match |
|
- type: f1 |
|
value: 90.426 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts new_wiki |
|
type: squadshifts |
|
config: new_wiki |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 85.639 |
|
name: Exact Match |
|
- type: f1 |
|
value: 93.974 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts nyt |
|
type: squadshifts |
|
config: nyt |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 87.392 |
|
name: Exact Match |
|
- type: f1 |
|
value: 94.579 |
|
name: F1 |
|
- task: |
|
type: question-answering |
|
name: Question Answering |
|
dataset: |
|
name: squadshifts reddit |
|
type: squadshifts |
|
config: reddit |
|
split: test |
|
metrics: |
|
- type: exact_match |
|
value: 79.323 |
|
name: Exact Match |
|
- type: f1 |
|
value: 90.083 |
|
name: F1 |
|
|
|
--- |
|
# flan-t5-xl for Extractive QA |
|
|
|
This is the [flan-t5-xl](https://huggingface.co/google/flan-t5-xl) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering. |
|
|
|
|
|
## Overview |
|
**Language model:** flan-t5-xl |
|
**Language:** English |
|
**Downstream-task:** Extractive QA |
|
**Training data:** SQuAD 2.0 |
|
**Eval data:** SQuAD 2.0 |
|
**Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system) |
|
|
|
## Hyperparameters |
|
|
|
``` |
|
learning_rate: 1e-05 |
|
train_batch_size: 4 |
|
eval_batch_size: 8 |
|
seed: 42 |
|
gradient_accumulation_steps: 16 |
|
total_train_batch_size: 64 |
|
optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
lr_scheduler_type: linear |
|
lr_scheduler_warmup_ratio: 0.1 |
|
num_epochs: 4.0 |
|
``` |
|
|
|
## Usage |
|
|
|
### In Haystack |
|
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do extractive question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/): |
|
```python |
|
# NOTE: This only works with Haystack v2.0! |
|
reader = ExtractiveReader(model_name_or_path="deepset/flan-t5-xl-squad2") |
|
``` |
|
|
|
### In Transformers |
|
```python |
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline |
|
|
|
model_name = "deepset/flan-t5-xl-squad2" |
|
|
|
# a) Get predictions |
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) |
|
QA_input = { |
|
'question': 'Why is model conversion important?', |
|
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.' |
|
} |
|
res = nlp(QA_input) |
|
|
|
# b) Load model & tokenizer |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
``` |
|
|
|
## Authors |
|
**Sebastian Husch Lee:** sebastian.huschlee [at] deepset.ai |
|
|
|
|
|
## About us |
|
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3"> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/haystack-logo-colored.svg" class="w-40"/> |
|
</div> |
|
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center"> |
|
<img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/deepset-logo-colored.svg" class="w-40"/> |
|
</div> |
|
</div> |
|
|
|
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc. |
|
|
|
|
|
## Get in touch and join the Haystack community |
|
|
|
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>. |
|
|
|
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join">Discord community open to everyone!</a></strong></p> |
|
|
|
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai) |
|
|