language: en
license: cc-by-4.0
datasets:
- squad_v2
model-index:
- name: deepset/electra-base-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 77.6074
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzE5NTRmMmUwYTk1MTI0NjM0ZmQwNDFmM2Y4Mjk4ZWYxOGVmOWI3ZGFiNWM4OTUxZDQ2ZjdmNmU3OTk5ZjRjYyIsInZlcnNpb24iOjF9.0VZRewdiovE4z3K5box5R0oTT7etpmd0BX44FJBLRFfot-uJ915b-bceSv3luJQ7ENPjaYSa7o7jcHlDzn3oAw
- type: f1
value: 81.7181
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2VlMzM0Y2UzYjhhNTJhMTFiYWZmMDNjNjRiZDgwYzc5NWE3N2M4ZGFlYWQ0ZjVkZTE2MDU0YmMzMDc1MTY5MCIsInZlcnNpb24iOjF9.jRV58UxOM7CJJSsmxJuZvlt00jMGA1thp4aqtcFi1C8qViQ1kW7NYz8rg1gNTDZNez2UwPS1NgN_HnnwBHPbCQ
electra-base for QA
Overview
Language model: electra-base
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See example in FARM
Infrastructure: 1x Tesla v100
Hyperparameters
seed=42
batch_size = 32
n_epochs = 5
base_LM_model = "google/electra-base-discriminator"
max_seq_len = 384
learning_rate = 1e-4
lr_schedule = LinearWarmup
warmup_proportion = 0.1
doc_stride=128
max_query_length=64
Performance
Evaluated on the SQuAD 2.0 dev set with the official eval script.
"exact": 77.30144024256717,
"f1": 81.35438272008543,
"total": 11873,
"HasAns_exact": 74.34210526315789,
"HasAns_f1": 82.45961302894314,
"HasAns_total": 5928,
"NoAns_exact": 80.25231286795626,
"NoAns_f1": 80.25231286795626,
"NoAns_total": 5945
Usage
In Transformers
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/electra-base-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and lets people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
In FARM
from farm.modeling.adaptive_model import AdaptiveModel
from farm.modeling.tokenization import Tokenizer
from farm.infer import Inferencer
model_name = "deepset/electra-base-squad2"
# a) Get predictions
nlp = Inferencer.load(model_name, task_type="question_answering")
QA_input = [{"questions": ["Why is model conversion important?"],
"text": "The option to convert models between FARM and transformers gives freedom to the user and lets people easily switch between frameworks."}]
res = nlp.inference_from_dicts(dicts=QA_input)
# b) Load model & tokenizer
model = AdaptiveModel.convert_from_transformers(model_name, device="cpu", task_type="question_answering")
tokenizer = Tokenizer.load(model_name)
In haystack
For doing QA at scale (i.e. many docs instead of a single paragraph), you can load the model also in haystack:
reader = FARMReader(model_name_or_path="deepset/electra-base-squad2")
# or
reader = TransformersReader(model="deepset/electra-base-squad2",tokenizer="deepset/electra-base-squad2")
Authors
Vaishali Pal vaishali.pal [at] deepset.ai
Branden Chan: branden.chan [at] deepset.ai
Timo M枚ller: timo.moeller [at] deepset.ai
Malte Pietsch: malte.pietsch [at] deepset.ai
Tanay Soni: tanay.soni [at] deepset.ai
About us
We bring NLP to the industry via open source!
Our focus: Industry specific language models & large scale QA systems.
Some of our work:
- German BERT (aka "bert-base-german-cased")
- GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")
- FARM
- Haystack
Get in touch: Twitter | LinkedIn | Discord | GitHub Discussions | Website
By the way: we're hiring!