guoday commited on
Commit
4da5b5b
·
1 Parent(s): c9b068f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +161 -0
README.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: deepseek-license
4
+ license_link: LICENSE
5
+ ---
6
+
7
+
8
+
9
+ ### 1. Introduction of Deepseek Coder
10
+
11
+ Deepseek Coder comprises a series of code language models trained on both 87% code and 13% natural language in English and Chinese, with each model pre-trained on 2T tokens. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.
12
+
13
+ - **Massive Training Data**: Trained on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.
14
+
15
+ - **Highly Flexible & Scalable**: Offered in model sizes of 1.3B, 5.7B, 6.7B, and 33B, enabling users to choose the setup most suitable for their requirements.
16
+
17
+ - **Superior Model Performance**: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks.
18
+
19
+ - **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.
20
+
21
+
22
+
23
+ ### 2. Model Summary
24
+ deepseek-coder-6.7b-base is a 6.7B parameter model with Multi-Head Attention trained on 2 trillion tokens.
25
+ - **Home Page:** [DeepSeek](https://deepseek.com/)
26
+ - **Repository:** [deepseek-ai/deepseek-coder](https://github.com/deepseek-ai/deepseek-coder)
27
+ - **Chat With DeepSeek Coder:** [DeepSeek-Coder](https://coder.deepseek.com/)
28
+
29
+
30
+ ### 3. How to Use
31
+ Here give some examples of how to use our model.
32
+ #### 1)Code Completion
33
+ ```python
34
+ from transformers import AutoTokenizer, AutoModelForCausalLM
35
+ import torch
36
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
37
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
38
+ input_text = "#write a quick sort algorithm"
39
+ inputs = tokenizer(input_text, return_tensors="pt").cuda()
40
+ outputs = model.generate(**inputs, max_length=128)
41
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
42
+ ```
43
+
44
+ #### 2)Code Insertion
45
+ ```python
46
+ from transformers import AutoTokenizer, AutoModelForCausalLM
47
+ import torch
48
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
49
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
50
+ input_text = """<|fim▁begin|>def quick_sort(arr):
51
+ if len(arr) <= 1:
52
+ return arr
53
+ pivot = arr[0]
54
+ left = []
55
+ right = []
56
+ <|fim▁hole|>
57
+ if arr[i] < pivot:
58
+ left.append(arr[i])
59
+ else:
60
+ right.append(arr[i])
61
+ return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
62
+ inputs = tokenizer(input_text, return_tensors="pt").cuda()
63
+ outputs = model.generate(**inputs, max_length=128)
64
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
65
+ ```
66
+
67
+ #### 3)Repository Level Code Completion
68
+ ```python
69
+ from transformers import AutoTokenizer, AutoModelForCausalLM
70
+ tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
71
+ model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
72
+
73
+ input_text = """#utils.py
74
+ import torch
75
+ from sklearn import datasets
76
+ from sklearn.model_selection import train_test_split
77
+ from sklearn.preprocessing import StandardScaler
78
+ from sklearn.metrics import accuracy_score
79
+
80
+ def load_data():
81
+ iris = datasets.load_iris()
82
+ X = iris.data
83
+ y = iris.target
84
+
85
+ # Standardize the data
86
+ scaler = StandardScaler()
87
+ X = scaler.fit_transform(X)
88
+
89
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
90
+
91
+ # Convert numpy data to PyTorch tensors
92
+ X_train = torch.tensor(X_train, dtype=torch.float32)
93
+ X_test = torch.tensor(X_test, dtype=torch.float32)
94
+ y_train = torch.tensor(y_train, dtype=torch.int64)
95
+ y_test = torch.tensor(y_test, dtype=torch.int64)
96
+
97
+ return X_train, X_test, y_train, y_test
98
+
99
+ def evaluate_predictions(y_test, y_pred):
100
+ return accuracy_score(y_test, y_pred)
101
+ #model.py
102
+ import torch
103
+ import torch.nn as nn
104
+ import torch.optim as optim
105
+ from torch.utils.data import DataLoader, TensorDataset
106
+
107
+ class IrisClassifier(nn.Module):
108
+ def __init__(self):
109
+ super(IrisClassifier, self).__init__()
110
+ self.fc = nn.Sequential(
111
+ nn.Linear(4, 16),
112
+ nn.ReLU(),
113
+ nn.Linear(16, 3)
114
+ )
115
+
116
+ def forward(self, x):
117
+ return self.fc(x)
118
+
119
+ def train_model(self, X_train, y_train, epochs, lr, batch_size):
120
+ criterion = nn.CrossEntropyLoss()
121
+ optimizer = optim.Adam(self.parameters(), lr=lr)
122
+
123
+ # Create DataLoader for batches
124
+ dataset = TensorDataset(X_train, y_train)
125
+ dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
126
+
127
+ for epoch in range(epochs):
128
+ for batch_X, batch_y in dataloader:
129
+ optimizer.zero_grad()
130
+ outputs = self(batch_X)
131
+ loss = criterion(outputs, batch_y)
132
+ loss.backward()
133
+ optimizer.step()
134
+
135
+ def predict(self, X_test):
136
+ with torch.no_grad():
137
+ outputs = self(X_test)
138
+ _, predicted = outputs.max(1)
139
+ return predicted.numpy()
140
+ #main.py
141
+ from utils import load_data, evaluate_predictions
142
+ from model import IrisClassifier as Classifier
143
+
144
+ def main():
145
+ # Model training and evaluation
146
+ """
147
+ inputs = tokenizer(input_text, return_tensors="pt").cuda()
148
+ outputs = model.generate(**inputs, max_new_tokens=140)
149
+ print(tokenizer.decode(outputs[0]))
150
+ ```
151
+
152
+
153
+
154
+ ### 4. Lincense
155
+ This code repository is licensed under the MIT License. The use of DeepSeek Coder model and weights is subject to the Model License. DeepSeek Coder supports commercial use.
156
+
157
+ See the [LICENSE-MODEL](https://github.com/deepseek-ai/deepseek-coder/blob/main/LICENSE-MODEL) for more details.
158
+
159
+ ### 5. Contact
160
+
161
+ If you have any questions, please raise an issue or contact us at [agi_code@deepseek.com](mailto:agi_code@deepseek.com).