|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Forked from the file src/transformers/models/bert_generation/tokenization_bert_generation.py from the HuggingFace Transformers library. |
|
Permalink: https://github.com/huggingface/transformers/blob/04ab5605fbb4ef207b10bf2772d88c53fc242e83/src/transformers/models/bert_generation/tokenization_bert_generation.py |
|
Tokenizer class for ReplitLM |
|
Class is modified for compatibility with custom vocabulary and to achieve desired encode/decode behavior for Replit Code V1 3B model. |
|
""" |
|
import os |
|
import sentencepiece as spm |
|
from sentencepiece import SentencePieceProcessor |
|
from shutil import copyfile |
|
from transformers import PreTrainedTokenizer |
|
from typing import Any, Dict, List, Optional, Tuple |
|
import base64 |
|
|
|
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'} |
|
|
|
class Tokenizer: |
|
def __init__(self, model_path="/weka-jd/prod/deepseek/permanent/shared/mingchuan/llama_data/tokenizer.model"): |
|
|
|
assert os.path.isfile(model_path), model_path |
|
self.sp_model = SentencePieceProcessor(model_file=model_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.n_words: int = self.sp_model.vocab_size() |
|
self.bos_id: int = self.sp_model.bos_id() |
|
self.eos_id: int = self.sp_model.eos_id() |
|
self.pad_id: int = self.sp_model.pad_id() |
|
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() |
|
|
|
def encode(self, s: str, bos: bool, eos: bool) -> List[int]: |
|
assert type(s) is str |
|
t = self.sp_model.encode(s) |
|
if bos: |
|
t = [self.bos_id] + t |
|
if eos: |
|
t = t + [self.eos_id] |
|
return t |
|
|
|
def decode(self, t: List[int]) -> str: |
|
return self.sp_model.decode(t) |
|
|
|
class LineBBPETokenizer(Tokenizer): |
|
def __init__(self, |
|
model_path="/3fs-jd/prod/deepseek/shared/daidamai/data/bbpe/spm_0717_final/100000/bbpe_full_bytes.model", |
|
ignore_decode_err=False, attachfile_path=None): |
|
super().__init__(model_path=model_path) |
|
self.ignore_decode_err = ignore_decode_err |
|
Bvocab_path = attachfile_path + "/byteVocab.txt" |
|
|
|
punct_path = attachfile_path + "/all_punct.txt" |
|
|
|
Bvocab = open(Bvocab_path, 'r', encoding = 'utf-8') |
|
self.punct = [] |
|
with open(punct_path, 'r', encoding='utf-8') as f: |
|
lines = f.readlines() |
|
for line in lines: |
|
line = line.strip() |
|
if line: |
|
self.punct.append(line) |
|
|
|
self.numchars = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] |
|
self.white_space = [' '] |
|
self.special_chars = set(self.numchars) | set(self.punct) | set(self.white_space) |
|
|
|
|
|
unk_ch = set() |
|
for ch in self.special_chars: |
|
ids = self.sp_model.encode(ch) |
|
if 0 in ids: |
|
unk_ch.update(ch) |
|
self.special_chars = self.special_chars - unk_ch |
|
|
|
self.byte2ch = [-1] * 256 |
|
self.ch2byte = {} |
|
for line in list(Bvocab.readlines())[:256]: |
|
tokens = line.strip().split('\t') |
|
self.byte2ch[int(tokens[0])] = tokens[1] |
|
self.ch2byte[tokens[1]] = int(tokens[0]) |
|
self.b16_dec = {} |
|
self.b16_enc = ['x'] * 16 |
|
for i in range(10): |
|
self.b16_dec[str(i)] = i |
|
self.b16_enc[i] = str(i) |
|
self.b16_dec['A'] = 10 |
|
self.b16_dec['B'] = 11 |
|
self.b16_dec['C'] = 12 |
|
self.b16_dec['D'] = 13 |
|
self.b16_dec['E'] = 14 |
|
self.b16_dec['F'] = 15 |
|
self.b16_enc[10] = 'A' |
|
self.b16_enc[11] = 'B' |
|
self.b16_enc[12] = 'C' |
|
self.b16_enc[13] = 'D' |
|
self.b16_enc[14] = 'E' |
|
self.b16_enc[15] = 'F' |
|
|
|
self.new_line_id = self.sp_model.encode(self.mapping_raw_to_256ch('\n'))[-1] |
|
|
|
def base16encode(self, n): |
|
return self.b16_enc[n // 16] + self.b16_enc[n % 16] |
|
|
|
def base16decode(self, s): |
|
return self.b16_dec[s[0]] * 16 + self.b16_dec[s[1]] |
|
|
|
def mapping_raw_to_256ch(self, s: str) -> str: |
|
mapped_s = [] |
|
for token in s: |
|
if token in self.special_chars: |
|
mapped_s.append(token) |
|
continue |
|
tk = str(base64.b16encode(token.encode("utf-8")))[2:-1] |
|
num = len(tk) // 2 |
|
for i in range(num): |
|
mapped_s.append(self.byte2ch[(self.base16decode(tk[2*i:2*i+2]))]) |
|
return ''.join(mapped_s) |
|
|
|
def mapping_256ch_to_raw(self, s: str) -> str: |
|
mapped_s = '' |
|
for token in s: |
|
if token in self.ch2byte: |
|
mapped_s += self.base16encode(self.ch2byte[token]) |
|
else: |
|
mapped_s += str(base64.b16encode(token.encode("utf-8")))[2:-1] |
|
|
|
byte_s = bytes.fromhex(mapped_s) |
|
if self.ignore_decode_err: |
|
try: |
|
mapped_s = byte_s.decode('utf-8') |
|
except UnicodeDecodeError: |
|
mapped_s = '' |
|
else: |
|
mapped_s = byte_s.decode('utf-8') |
|
return mapped_s |
|
|
|
def encode_line(self, s): |
|
if s == '\n': |
|
return [self.new_line_id] |
|
ss = self.mapping_raw_to_256ch(s) |
|
t = self.sp_model.encode(ss) |
|
return t |
|
|
|
def encode(self, s: str, bos: bool, eos: bool) -> List[int]: |
|
assert type(s) is str |
|
t = [] |
|
lines = s.split('\n') |
|
n_lines = len(lines) |
|
for i in range(n_lines): |
|
if i != n_lines - 1: |
|
line = lines[i] + '\n' |
|
else: |
|
line = lines[i] |
|
tt = self.encode_line(line) |
|
t += tt |
|
if bos: |
|
t = [self.bos_id] + t |
|
if eos: |
|
t = t + [self.eos_id] |
|
return t |
|
|
|
def get_restored_white_space(self, t): |
|
t = t[:3] |
|
if t[0] == self.bos_id: |
|
t = t[1:] |
|
decoded = self.sp_model.decode(t) |
|
encoded = self.sp_model.encode(decoded) |
|
if len(encoded) < len(t): |
|
return ' ' |
|
else: |
|
return '' |
|
|
|
def decode_line(self, t): |
|
if len(t) == 1 and t[0] == self.new_line_id: |
|
return '\n' |
|
|
|
restored_white_space = self.get_restored_white_space(t) |
|
ss = self.sp_model.decode(t) |
|
s = restored_white_space + self.mapping_256ch_to_raw(ss) |
|
return s |
|
|
|
def decode(self, t: List[int]) -> str: |
|
s = '' |
|
new_line_indices = [index for index, value in enumerate(t) if value == self.new_line_id] |
|
last_idx = 0 |
|
for i in range(len(new_line_indices)): |
|
line_id = t[last_idx:new_line_indices[i] + 1] |
|
ss = self.decode_line(line_id) |
|
s += ss |
|
last_idx = new_line_indices[i] + 1 |
|
if last_idx < len(t): |
|
line_id = t[last_idx:] |
|
ss = self.decode_line(line_id) |
|
s += ss |
|
return s |
|
|
|
def add_special(self, special_tokens): |
|
''' |
|
add special tokens to the tokenizer |
|
''' |
|
spm_proto = sp_pb2_model.ModelProto() |
|
spm_proto.ParseFromString(self.sp_model.serialized_model_proto()) |
|
for special_token in special_tokens: |
|
new_p = sp_pb2_model.ModelProto().SentencePiece() |
|
new_p.piece = self.mapping_raw_to_256ch(special_token) |
|
new_p.score = 0.0 |
|
new_p.type = 4 |
|
spm_proto.pieces.append(new_p) |
|
print(f'special token added: {special_token}') |
|
self.sp_model.LoadFromSerializedProto(spm_proto.SerializeToString()) |
|
|
|
class DeepSeekTokenizer(PreTrainedTokenizer): |
|
""" |
|
Construct a ReplitLMTokenizer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece). |
|
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. |
|
Args: |
|
vocab_file (`str`): |
|
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that |
|
contains the vocabulary necessary to instantiate a tokenizer. |
|
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`): |
|
The end of sequence token. |
|
bos_token (`str`, *optional*, defaults to `None`): |
|
The begin of sequence token. |
|
unk_token (`str`, *optional*, defaults to `"<|unk|>"`): |
|
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this |
|
token instead. |
|
pad_token (`str`, *optional*, defaults to `"<|pad|>"`): |
|
The token used for padding, for example when batching sequences of different lengths. |
|
sp_model_kwargs (`dict`, *optional*): |
|
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for |
|
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, |
|
to set: |
|
- `enable_sampling`: Enable subword regularization. |
|
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. |
|
- `nbest_size = {0,1}`: No sampling is performed. |
|
- `nbest_size > 1`: samples from the nbest_size results. |
|
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) |
|
using forward-filtering-and-backward-sampling algorithm. |
|
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for |
|
BPE-dropout. |
|
""" |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
prefix_tokens: List[int] = [] |
|
model_input_names = ['input_ids', 'attention_mask'] |
|
|
|
def __init__(self, vocab_file, bos_token="<s>", eos_token='</s>', unk_token=None, pad_token=None, sep_token='</s>', sp_model_kwargs: Optional[Dict[str, Any]]=None, name_or_path=None, **kwargs) -> None: |
|
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs |
|
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs) |
|
|
|
vocab_path = name_or_path |
|
print("vocab_path: ", vocab_path) |
|
self.vocab_path = vocab_path |
|
self.vocab_file = vocab_path + '/tokenizer.model' |
|
self.token = LineBBPETokenizer(model_path=self.vocab_file, attachfile_path=vocab_path, ignore_decode_err=True) |
|
|
|
@property |
|
def vocab_size(self): |
|
return self.token.sp_model.get_piece_size() |
|
|
|
def get_vocab(self): |
|
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def __getstate__(self): |
|
state = self.__dict__.copy() |
|
state['token'] = None |
|
return state |
|
|
|
def __setstate__(self, d): |
|
self.__dict__ = d |
|
if not hasattr(self, 'sp_model_kwargs'): |
|
self.sp_model_kwargs = {} |
|
self.token = LineBBPETokenizer(model_path=self.vocab_file, attachfile_path=self.vocab_path) |
|
|
|
def _tokenize(self, text: str) -> List[str]: |
|
"""Take as input a string and return a list of strings (tokens) for words/sub-words""" |
|
token_ids = self.token.encode(text, bos=True, eos=False) |
|
string_tokens = [self._convert_id_to_token(token_id) for token_id in token_ids] |
|
return string_tokens |
|
|
|
def _convert_token_to_id(self, token): |
|
"""Converts a token (str) in an id using the vocab.""" |
|
return self.token.sp_model.piece_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (str) using the vocab.""" |
|
token = self.token.sp_model.id_to_piece(index) |
|
return token |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (string) in a single string.""" |
|
ids = [self._convert_token_to_id(token) for token in tokens] |
|
return self.token.decode(ids) |
|
|
|
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str]=None) -> Tuple[str]: |
|
if not os.path.isdir(save_directory): |
|
raise ValueError(f'Vocabulary path ({save_directory}) should be a directory') |
|
out_vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) |
|
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): |
|
copyfile(self.vocab_file, out_vocab_file) |
|
elif not os.path.isfile(self.vocab_file): |
|
with open(out_vocab_file, 'wb') as fi: |
|
content_spiece_model = self.sp_model.serialized_model_proto() |
|
fi.write(content_spiece_model) |
|
return (out_vocab_file,) |