ESFT-token-intent-lite / tokenization_deepseek.py
ZihanWang314's picture
Upload folder using huggingface_hub
70c73ab verified
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Forked from the file src/transformers/models/bert_generation/tokenization_bert_generation.py from the HuggingFace Transformers library.
Permalink: https://github.com/huggingface/transformers/blob/04ab5605fbb4ef207b10bf2772d88c53fc242e83/src/transformers/models/bert_generation/tokenization_bert_generation.py
Tokenizer class for ReplitLM
Class is modified for compatibility with custom vocabulary and to achieve desired encode/decode behavior for Replit Code V1 3B model.
"""
import os
import sentencepiece as spm
from sentencepiece import SentencePieceProcessor
from shutil import copyfile
from transformers import PreTrainedTokenizer
from typing import Any, Dict, List, Optional, Tuple
import base64
VOCAB_FILES_NAMES = {'vocab_file': 'spiece.model'}
class Tokenizer:
def __init__(self, model_path="/weka-jd/prod/deepseek/permanent/shared/mingchuan/llama_data/tokenizer.model"):
# reload tokenizer
assert os.path.isfile(model_path), model_path
self.sp_model = SentencePieceProcessor(model_file=model_path)
# # ? print spm for debugging
# spm_proto = sp_pb2_model.ModelProto()
# spm_proto.ParseFromString(self.sp_model.serialized_model_proto())
# print(dir(spm_proto))
# attrs = ['denormalizer_spec', 'normalizer_spec', 'trainer_spec']
# print('=======' * 5)
# for attr in attrs:
# print('=======', attr, '=======')
# print(getattr(spm_proto, attr))
# BOS / EOS token IDs
self.n_words: int = self.sp_model.vocab_size()
self.bos_id: int = self.sp_model.bos_id()
self.eos_id: int = self.sp_model.eos_id()
self.pad_id: int = self.sp_model.pad_id()
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
assert type(s) is str
t = self.sp_model.encode(s)
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def decode(self, t: List[int]) -> str:
return self.sp_model.decode(t)
class LineBBPETokenizer(Tokenizer):
def __init__(self,
model_path="/3fs-jd/prod/deepseek/shared/daidamai/data/bbpe/spm_0717_final/100000/bbpe_full_bytes.model",
ignore_decode_err=False, attachfile_path=None):
super().__init__(model_path=model_path)
self.ignore_decode_err = ignore_decode_err
Bvocab_path = attachfile_path + "/byteVocab.txt"
#'/3fs-jd/prod/deepseek/shared/daidamai/data/bbpe/byteVocab.txt'
punct_path = attachfile_path + "/all_punct.txt"
#punct_path = '/3fs-jd/prod/deepseek/shared/daidamai/data/bbpe/all_punct.txt'
Bvocab = open(Bvocab_path, 'r', encoding = 'utf-8')
self.punct = []
with open(punct_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if line:
self.punct.append(line)
self.numchars = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
self.white_space = [' ']
self.special_chars = set(self.numchars) | set(self.punct) | set(self.white_space)
# ! remove chars that will be encoded to 0 (unk_id)
unk_ch = set()
for ch in self.special_chars:
ids = self.sp_model.encode(ch)
if 0 in ids:
unk_ch.update(ch)
self.special_chars = self.special_chars - unk_ch
self.byte2ch = [-1] * 256
self.ch2byte = {}
for line in list(Bvocab.readlines())[:256]:
tokens = line.strip().split('\t')
self.byte2ch[int(tokens[0])] = tokens[1]
self.ch2byte[tokens[1]] = int(tokens[0])
self.b16_dec = {}
self.b16_enc = ['x'] * 16
for i in range(10):
self.b16_dec[str(i)] = i
self.b16_enc[i] = str(i)
self.b16_dec['A'] = 10
self.b16_dec['B'] = 11
self.b16_dec['C'] = 12
self.b16_dec['D'] = 13
self.b16_dec['E'] = 14
self.b16_dec['F'] = 15
self.b16_enc[10] = 'A'
self.b16_enc[11] = 'B'
self.b16_enc[12] = 'C'
self.b16_enc[13] = 'D'
self.b16_enc[14] = 'E'
self.b16_enc[15] = 'F'
self.new_line_id = self.sp_model.encode(self.mapping_raw_to_256ch('\n'))[-1]
def base16encode(self, n):
return self.b16_enc[n // 16] + self.b16_enc[n % 16]
def base16decode(self, s):
return self.b16_dec[s[0]] * 16 + self.b16_dec[s[1]]
def mapping_raw_to_256ch(self, s: str) -> str:
mapped_s = []
for token in s:
if token in self.special_chars:
mapped_s.append(token)
continue
tk = str(base64.b16encode(token.encode("utf-8")))[2:-1]
num = len(tk) // 2
for i in range(num):
mapped_s.append(self.byte2ch[(self.base16decode(tk[2*i:2*i+2]))])
return ''.join(mapped_s)
def mapping_256ch_to_raw(self, s: str) -> str:
mapped_s = ''
for token in s:
if token in self.ch2byte:
mapped_s += self.base16encode(self.ch2byte[token])
else:
mapped_s += str(base64.b16encode(token.encode("utf-8")))[2:-1]
# decode utf-8 string to text string
byte_s = bytes.fromhex(mapped_s)
if self.ignore_decode_err:
try:
mapped_s = byte_s.decode('utf-8')
except UnicodeDecodeError:
mapped_s = ''
else:
mapped_s = byte_s.decode('utf-8')
return mapped_s
def encode_line(self, s):
if s == '\n':
return [self.new_line_id]
ss = self.mapping_raw_to_256ch(s)
t = self.sp_model.encode(ss)
return t
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
assert type(s) is str
t = []
lines = s.split('\n')
n_lines = len(lines)
for i in range(n_lines):
if i != n_lines - 1:
line = lines[i] + '\n'
else:
line = lines[i]
tt = self.encode_line(line)
t += tt
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def get_restored_white_space(self, t):
t = t[:3]
if t[0] == self.bos_id:
t = t[1:]
decoded = self.sp_model.decode(t)
encoded = self.sp_model.encode(decoded)
if len(encoded) < len(t):
return ' '
else:
return ''
def decode_line(self, t):
if len(t) == 1 and t[0] == self.new_line_id:
return '\n'
# ? special bug fixing for a single whitespace in the line beginning, sentencepiece will consume it, we restore it
restored_white_space = self.get_restored_white_space(t)
ss = self.sp_model.decode(t)
s = restored_white_space + self.mapping_256ch_to_raw(ss)
return s
def decode(self, t: List[int]) -> str:
s = ''
new_line_indices = [index for index, value in enumerate(t) if value == self.new_line_id]
last_idx = 0
for i in range(len(new_line_indices)):
line_id = t[last_idx:new_line_indices[i] + 1]
ss = self.decode_line(line_id)
s += ss
last_idx = new_line_indices[i] + 1
if last_idx < len(t):
line_id = t[last_idx:]
ss = self.decode_line(line_id)
s += ss
return s
def add_special(self, special_tokens):
'''
add special tokens to the tokenizer
'''
spm_proto = sp_pb2_model.ModelProto()
spm_proto.ParseFromString(self.sp_model.serialized_model_proto())
for special_token in special_tokens:
new_p = sp_pb2_model.ModelProto().SentencePiece()
new_p.piece = self.mapping_raw_to_256ch(special_token)
new_p.score = 0.0
new_p.type = 4
spm_proto.pieces.append(new_p)
print(f'special token added: {special_token}')
self.sp_model.LoadFromSerializedProto(spm_proto.SerializeToString())
class DeepSeekTokenizer(PreTrainedTokenizer):
"""
Construct a ReplitLMTokenizer tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
bos_token (`str`, *optional*, defaults to `None`):
The begin of sequence token.
unk_token (`str`, *optional*, defaults to `"<|unk|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<|pad|>"`):
The token used for padding, for example when batching sequences of different lengths.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
"""
vocab_files_names = VOCAB_FILES_NAMES
prefix_tokens: List[int] = []
model_input_names = ['input_ids', 'attention_mask']
def __init__(self, vocab_file, bos_token="<s>", eos_token='</s>', unk_token=None, pad_token=None, sep_token='</s>', sp_model_kwargs: Optional[Dict[str, Any]]=None, name_or_path=None, **kwargs) -> None:
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, sep_token=sep_token, sp_model_kwargs=self.sp_model_kwargs, **kwargs)
#obtain the current directory of py
vocab_path = name_or_path
print("vocab_path: ", vocab_path)
self.vocab_path = vocab_path
self.vocab_file = vocab_path + '/tokenizer.model'
self.token = LineBBPETokenizer(model_path=self.vocab_file, attachfile_path=vocab_path, ignore_decode_err=True)
@property
def vocab_size(self):
return self.token.sp_model.get_piece_size()
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state['token'] = None
return state
def __setstate__(self, d):
self.__dict__ = d
if not hasattr(self, 'sp_model_kwargs'):
self.sp_model_kwargs = {}
self.token = LineBBPETokenizer(model_path=self.vocab_file, attachfile_path=self.vocab_path)
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
token_ids = self.token.encode(text, bos=True, eos=False)
string_tokens = [self._convert_id_to_token(token_id) for token_id in token_ids]
return string_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.token.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.token.sp_model.id_to_piece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
ids = [self._convert_token_to_id(token) for token in tokens]
return self.token.decode(ids)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str]=None) -> Tuple[str]:
if not os.path.isdir(save_directory):
raise ValueError(f'Vocabulary path ({save_directory}) should be a directory')
out_vocab_file = os.path.join(save_directory, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'])
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, 'wb') as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)