GeeeekExplorer's picture
add inference demo
3f13c8c
import math
from dataclasses import dataclass
from typing import Tuple, Optional, Literal
from einops import rearrange
import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist
from kernel import act_quant, fp8_gemm, fp8_index
world_size = 1
rank = 0
block_size = 128
@dataclass
class ModelArgs:
"""
Data class for defining model arguments and hyperparameters.
Attributes:
max_batch_size (int): Maximum batch size.
max_seq_len (int): Maximum sequence length.
dtype (Literal["bf16", "fp8"]): Data type for computations.
scale_fmt (Optional[str]): Format for quantization scale.
vocab_size (int): Vocabulary size.
dim (int): Model dimension.
inter_dim (int): Intermediate dimension for MLP layers.
moe_inter_dim (int): Intermediate dimension for MoE layers.
n_layers (int): Number of transformer layers.
n_dense_layers (int): Number of dense layers in the model.
n_heads (int): Number of attention heads.
n_routed_experts (int): Number of routed experts for MoE layers.
n_shared_experts (int): Number of shared experts for MoE layers.
n_activated_experts (int): Number of activated experts in MoE layers.
n_expert_groups (int): Number of expert groups.
n_limited_groups (int): Number of limited groups for MoE routing.
score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
route_scale (float): Scaling factor for routing scores.
q_lora_rank (int): LoRA rank for query projections.
kv_lora_rank (int): LoRA rank for key-value projections.
qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
v_head_dim (int): Dimension for value projections.
original_seq_len (int): Original sequence length.
rope_theta (float): Base for rotary positional encoding.
rope_factor (float): Scaling factor for extended sequence lengths.
beta_fast (int): Fast beta correction factor.
beta_slow (int): Slow beta correction factor.
mscale (float): Scaling factor for extended attention.
index_head_dim (int): Dimension for index head.
index_topk (int): Top-k for index head.
"""
max_batch_size: int = 8
max_seq_len: int = 4096 * 4
dtype: Literal["bf16", "fp8"] = "bf16"
scale_fmt: Optional[str] = None
vocab_size: int = 102400
dim: int = 2048
inter_dim: int = 10944
moe_inter_dim: int = 1408
n_layers: int = 27
n_dense_layers: int = 1
n_heads: int = 16
# moe
n_routed_experts: int = 64
n_shared_experts: int = 2
n_activated_experts: int = 6
n_expert_groups: int = 1
n_limited_groups: int = 1
score_func: Literal["softmax", "sigmoid"] = "softmax"
route_scale: float = 1.
# mla
q_lora_rank: int = 0
kv_lora_rank: int = 512
qk_nope_head_dim: int = 128
qk_rope_head_dim: int = 64
v_head_dim: int = 128
# yarn
original_seq_len: int = 4096
rope_theta: float = 10000.0
rope_factor: float = 40
beta_fast: int = 32
beta_slow: int = 1
mscale: float = 1.
# index
index_n_heads: int = 64
index_head_dim: int = 128
index_topk: int = 2048
class ParallelEmbedding(nn.Module):
"""
Embedding layer with parallelism support across distributed processes.
Args:
vocab_size (int): Vocabulary size.
dim (int): Embedding dimension.
"""
def __init__(self, vocab_size: int, dim: int):
super().__init__()
self.vocab_size = vocab_size
self.dim = dim
assert vocab_size % world_size == 0, f"Vocabulary size must be divisible by world size (world_size={world_size})"
self.part_vocab_size = (vocab_size // world_size)
self.vocab_start_idx = rank * self.part_vocab_size
self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size
self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for parallel embedding layer.
Args:
x (torch.Tensor): Input tensor containing token indices.
Returns:
torch.Tensor: Embedded representations.
Raises:
ValueError: If `world_size` is not defined.
"""
if world_size > 1:
mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
x = x - self.vocab_start_idx
x[mask] = 0
y = F.embedding(x, self.weight)
if world_size > 1:
y[mask] = 0
dist.all_reduce(y)
return y
def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None,
scale_fmt: Optional[str] = None) -> torch.Tensor:
"""
Applies a linear transformation to the incoming data: y = xA^T + b.
This function supports specialized implementations based on quantization
and tensor formats.
Args:
x (torch.Tensor): The input tensor.
weight (torch.Tensor): The weight tensor. It may be quantized and
requires dequantization for certain cases.
bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None.
scale_fmt (Optional[str]): The format of scaling factors.
Returns:
torch.Tensor: The result of the linear transformation, which may involve
quantization-aware computations depending on the input parameters.
Notes:
- If `weight` is quantized (e.g., `element_size() == 1`), a dequantized version
is used for computation.
- For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation.
"""
assert bias is None
if weight.dtype != torch.float8_e4m3fn:
return F.linear(x, weight)
else:
x, scale = act_quant(x, block_size, scale_fmt)
return fp8_gemm(x, scale, weight, weight.scale)
class Linear(nn.Module):
"""
Custom linear layer with support for quantized weights and optional bias.
Args:
in_features (int): Number of input features.
out_features (int): Number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
dtype = torch.bfloat16
scale_fmt: Optional[str] = None
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype))
if self.weight.element_size() == 1:
scale_out_features = (out_features + block_size - 1) // block_size
scale_in_features = (in_features + block_size - 1) // block_size
self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32))
else:
self.register_parameter("scale", None)
if bias:
self.bias = nn.Parameter(torch.empty(out_features))
else:
self.register_parameter("bias", None)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the custom linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor after linear computation.
"""
return linear(x, self.weight, self.bias, self.scale_fmt)
class ColumnParallelLinear(Linear):
"""
Linear layer with column parallelism, splitting output features across distributed processes.
Args:
in_features (int): Number of input features.
out_features (int): Total number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
assert out_features % world_size == 0, f"Output features must be divisible by world size (world_size={world_size})"
self.part_out_features = out_features // world_size
super().__init__(in_features, self.part_out_features, bias, dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for column parallel linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor with column-parallel computation.
"""
y = linear(x, self.weight, self.bias, self.scale_fmt)
return y
class RowParallelLinear(Linear):
"""
Linear layer with row parallelism, splitting input features across distributed processes.
Args:
in_features (int): Total number of input features.
out_features (int): Number of output features.
bias (bool): Whether to include a bias term. Defaults to False.
dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
"""
def __init__(self, in_features: int, out_features: int, bias: bool = False, reduce_output = True, dtype = None):
assert in_features % world_size == 0, f"Input features must be divisible by world size (world_size={world_size})"
self.part_in_features = in_features // world_size
self.reduce_output = reduce_output
super().__init__(self.part_in_features, out_features, bias, dtype)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for row parallel linear layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Transformed tensor with row-parallel computation.
"""
y = linear(x, self.weight, None, self.scale_fmt)
if self.reduce_output and world_size > 1:
y = y.float()
dist.all_reduce(y)
if self.bias is not None:
y += self.bias
return y.type_as(x)
class RMSNorm(nn.Module):
"""
Root Mean Square Layer Normalization (RMSNorm).
Args:
dim (int): Dimension of the input tensor.
eps (float): Epsilon value for numerical stability. Defaults to 1e-6.
"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
def forward(self, x: torch.Tensor, residual: Optional[torch.Tensor] = None):
"""
Forward pass for RMSNorm.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Normalized tensor with the same shape as input.
"""
dtype = x.dtype
if residual is None:
x = x.float()
var = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(var + self.eps)
return (self.weight * x).to(dtype)
else:
x = residual = x.float() + residual.float()
var = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(var + self.eps)
return (self.weight * x).to(dtype), residual.to(dtype)
class LayerNorm(nn.Module):
"""
Layer Normalization.
"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
self.bias = nn.Parameter(torch.zeros(dim, dtype=torch.float32))
def forward(self, x: torch.Tensor):
return F.layer_norm(x.float(), (self.dim,), self.weight, self.bias, self.eps).type_as(x)
def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
"""
Precomputes frequency-based complex exponential values for rotary positional embeddings.
Args:
args (ModelArgs): Model arguments containing positional embedding parameters.
Returns:
torch.Tensor: Precomputed complex exponential values for positional embeddings.
"""
dim = args.qk_rope_head_dim
seqlen = args.max_seq_len
beta_fast = args.beta_fast
beta_slow = args.beta_slow
base = args.rope_theta
factor = args.rope_factor
def find_correction_dim(num_rotations, dim, base, max_seq_len):
"""
Computes the correction dimension for a given number of rotations in the rotary positional embedding.
Args:
num_rotations (float): Number of rotations to compute the correction for.
dim (int): Dimensionality of the embedding space.
base (float): Base value for the exponential computation.
max_seq_len (int): Maximum sequence length.
Returns:
float: The correction dimension based on the input parameters.
"""
return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))
def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
"""
Computes the range of correction dimensions for rotary positional embeddings.
Args:
low_rot (float): Lower bound for the number of rotations.
high_rot (float): Upper bound for the number of rotations.
dim (int): Dimensionality of the embedding space.
base (float): Base value for the exponential computation.
max_seq_len (int): Maximum sequence length.
Returns:
Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices.
"""
low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
return max(low, 0), min(high, dim-1)
def linear_ramp_factor(min, max, dim):
"""
Computes a linear ramp function used to smooth values between a minimum and maximum range.
Args:
min (float): Minimum value for the ramp function.
max (float): Maximum value for the ramp function.
dim (int): Dimensionality of the ramp tensor.
Returns:
torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1,
clamped to the range [0, 1].
"""
if min == max:
max += 0.001
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
if seqlen > args.original_seq_len:
low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len)
smooth = 1 - linear_ramp_factor(low, high, dim // 2)
freqs = freqs / factor * (1 - smooth) + freqs * smooth
t = torch.arange(seqlen)
freqs = torch.outer(t, freqs)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
return freqs_cis
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
"""
Applies rotary positional embeddings to the input tensor.
Args:
x (torch.Tensor): Input tensor with positional embeddings to be applied.
freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings.
Returns:
torch.Tensor: Tensor with rotary embeddings applied.
"""
dtype = x.dtype
x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
y = torch.view_as_real(x * freqs_cis).flatten(3)
return y.to(dtype)
def rotate_activation(x: torch.Tensor) -> torch.Tensor:
assert x.dtype == torch.bfloat16
from fast_hadamard_transform import hadamard_transform
hidden_size = x.size(-1)
return hadamard_transform(x, scale=hidden_size ** -0.5)
class Indexer(torch.nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.dim: int = args.dim
self.n_heads: int = args.index_n_heads
self.n_local_heads = args.index_n_heads // world_size
self.head_dim: int = args.index_head_dim
self.rope_head_dim: int = args.qk_rope_head_dim
self.index_topk: int = args.index_topk
self.q_lora_rank: int = args.q_lora_rank
self.wq_b = Linear(self.q_lora_rank, self.n_heads * self.head_dim)
self.wk = Linear(self.dim, self.head_dim)
self.k_norm = LayerNorm(self.head_dim)
self.weights_proj = Linear(self.dim, self.n_heads, dtype=torch.get_default_dtype())
self.softmax_scale = self.head_dim ** -0.5
self.scale_fmt = args.scale_fmt
self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.head_dim, dtype=torch.float8_e4m3fn), persistent=False)
self.register_buffer("k_scale_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.head_dim // block_size, dtype=torch.float32), persistent=False)
def forward(self, x: torch.Tensor, qr: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
bsz, seqlen, _ = x.size()
end_pos = start_pos + seqlen
q = self.wq_b(qr)
q = rearrange(q, 'b s (h d) -> b s h d', d=self.head_dim)
q_pe, q_nope = torch.split(q, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1)
q_pe = apply_rotary_emb(q_pe, freqs_cis)
q = torch.cat([q_pe, q_nope], dim=-1)
k = self.wk(x)
k = self.k_norm(k)
k_pe, k_nope = torch.split(k, [self.rope_head_dim, self.head_dim - self.rope_head_dim], dim=-1)
k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis).squeeze(2)
k = torch.cat([k_pe, k_nope], dim=-1)
q = rotate_activation(q)
k = rotate_activation(k)
q_fp8, q_scale = act_quant(q, block_size, self.scale_fmt)
k_fp8, k_scale = act_quant(k, block_size, self.scale_fmt)
self.k_cache[:bsz, start_pos:end_pos] = k_fp8
self.k_scale_cache[:bsz, start_pos:end_pos] = k_scale
weights = self.weights_proj(x) * self.n_heads ** -0.5
weights = weights.unsqueeze(-1) * q_scale * self.softmax_scale
index_score = fp8_index(q_fp8.contiguous(), weights, self.k_cache[:bsz, :end_pos].contiguous(), self.k_scale_cache[:bsz, :end_pos].contiguous())
if mask is not None:
index_score += mask
topk_indices = index_score.topk(min(self.index_topk, end_pos), dim=-1)[1]
topk_indices_ = topk_indices.clone()
dist.broadcast(topk_indices_, src=0)
assert torch.all(topk_indices == topk_indices_), f"{topk_indices=} {topk_indices_=}"
return topk_indices
def weight_dequant(weight, scale):
shape = weight.shape
assert weight.dim() == 2
weight = weight.view(shape[0] // block_size, block_size, shape[1] // block_size, block_size).transpose(1, 2).contiguous().view(-1, block_size * block_size)
weight = (weight.float() * scale.view(-1, 1).float()).to(torch.get_default_dtype()).view(shape[0] // block_size, shape[1] // block_size, block_size, block_size).transpose(1, 2).contiguous().view(shape)
return weight
class MLA(nn.Module):
"""
Multi-Head Latent Attention (MLA) Layer.
Attributes:
dim (int): Dimensionality of the input features.
n_heads (int): Number of attention heads.
n_local_heads (int): Number of local attention heads for distributed systems.
q_lora_rank (int): Rank for low-rank query projection.
kv_lora_rank (int): Rank for low-rank key/value projection.
qk_nope_head_dim (int): Dimensionality of non-positional query/key projections.
qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections.
qk_head_dim (int): Total dimensionality of query/key projections.
v_head_dim (int): Dimensionality of value projections.
softmax_scale (float): Scaling factor for softmax in attention computation.
"""
def __init__(self, args: ModelArgs):
super().__init__()
self.dim = args.dim
self.n_heads = args.n_heads
self.n_local_heads = args.n_heads // world_size
self.q_lora_rank = args.q_lora_rank
self.kv_lora_rank = args.kv_lora_rank
self.qk_nope_head_dim = args.qk_nope_head_dim
self.qk_rope_head_dim = args.qk_rope_head_dim
self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim
self.v_head_dim = args.v_head_dim
self.wq_a = Linear(self.dim, self.q_lora_rank)
self.q_norm = RMSNorm(self.q_lora_rank)
self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
self.kv_norm = RMSNorm(self.kv_lora_rank)
self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim)
self.softmax_scale = self.qk_head_dim ** -0.5
if args.max_seq_len > args.original_seq_len:
mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0
self.softmax_scale = self.softmax_scale * mscale * mscale
self.indexer = Indexer(args)
self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False)
self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)
self.dequant_wkv_b = None
def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
"""
Forward pass for the Multi-Head Latent Attention (MLA) Layer.
Args:
x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim).
start_pos (int): Starting position in the sequence for caching.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
Returns:
torch.Tensor: Output tensor with the same shape as the input.
"""
bsz, seqlen, _ = x.size()
end_pos = start_pos + seqlen
qr = self.q_norm(self.wq_a(x))
q = self.wq_b(qr)
q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
q_pe = apply_rotary_emb(q_pe, freqs_cis)
kv = self.wkv_a(x)
kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
kv = self.kv_norm(kv)
k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis)
self.kv_cache[:bsz, start_pos:end_pos] = kv
self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2)
if mask is not None: # MHA prefill
q = torch.cat([q_nope, q_pe], dim=-1)
kv = self.wkv_b(kv)
kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1)
scores = torch.einsum("bshd,bthd->bsht", q.float(), k.float()) * self.softmax_scale
# indexer
topk_indices = self.indexer(x, qr, start_pos, freqs_cis, mask)
index_mask = torch.full((bsz, seqlen, seqlen), float("-inf"), device=x.device).scatter_(-1, topk_indices, 0)
index_mask += mask
scores += index_mask.unsqueeze(2)
scores = scores.softmax(dim=-1, dtype=torch.float32)
x = torch.einsum("bsht,bthd->bshd", scores.type_as(x), v)
else: # MHA decode
if self.dequant_wkv_b is None and self.wkv_b.scale is not None:
self.dequant_wkv_b = weight_dequant(self.wkv_b.weight, self.wkv_b.scale)
wkv_b = self.wkv_b.weight if self.dequant_wkv_b is None else self.dequant_wkv_b
wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
scores = (torch.einsum("bshc,btc->bsht", q_nope.float(), self.kv_cache[:bsz, :end_pos].float()) +
torch.einsum("bshr,btr->bsht", q_pe.float(), self.pe_cache[:bsz, :end_pos].float())) * self.softmax_scale
# indexer
topk_indices = self.indexer(x, qr, start_pos, freqs_cis, mask)
index_mask = torch.full((bsz, 1, end_pos), float("-inf"), device=x.device).scatter_(-1, topk_indices, 0)
scores += index_mask.unsqueeze(2)
scores = scores.softmax(dim=-1, dtype=torch.float32)
x = torch.einsum("bsht,btc->bshc", scores.type_as(x), self.kv_cache[:bsz, :end_pos])
x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
x = self.wo(x.flatten(2))
return x
class MLP(nn.Module):
"""
Multi-Layer Perceptron (MLP) used as a feed-forward layer.
Attributes:
w1 (nn.Module): Linear layer for input-to-hidden transformation.
w2 (nn.Module): Linear layer for hidden-to-output transformation.
w3 (nn.Module): Additional linear layer for feature transformation.
"""
def __init__(self, dim: int, inter_dim: int, reduce_output: bool = True):
"""
Initializes the MLP layer.
Args:
dim (int): Input and output dimensionality.
inter_dim (int): Hidden layer dimensionality.
"""
super().__init__()
self.w1 = ColumnParallelLinear(dim, inter_dim)
self.w2 = RowParallelLinear(inter_dim, dim, reduce_output=reduce_output)
self.w3 = ColumnParallelLinear(dim, inter_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the MLP layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after MLP computation.
"""
return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x))
class Gate(nn.Module):
"""
Gating mechanism for routing inputs in a mixture-of-experts (MoE) model.
Attributes:
dim (int): Dimensionality of input features.
topk (int): Number of top experts activated for each input.
n_groups (int): Number of groups for routing.
topk_groups (int): Number of groups to route inputs to.
score_func (str): Scoring function ('softmax' or 'sigmoid').
route_scale (float): Scaling factor for routing weights.
weight (torch.nn.Parameter): Learnable weights for the gate.
bias (Optional[torch.nn.Parameter]): Optional bias term for the gate.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the Gate module.
Args:
args (ModelArgs): Model arguments containing gating parameters.
"""
super().__init__()
self.dim = args.dim
self.topk = args.n_activated_experts
self.n_groups = args.n_expert_groups
self.topk_groups = args.n_limited_groups
self.score_func = args.score_func
self.route_scale = args.route_scale
self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim))
self.bias = nn.Parameter(torch.empty(args.n_routed_experts, dtype=torch.float32)) if self.dim == 7168 else None
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Forward pass for the gating mechanism.
Args:
x (torch.Tensor): Input tensor.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices.
"""
scores = linear(x.float(), self.weight.float())
if self.score_func == "softmax":
scores = scores.softmax(dim=-1)
else:
scores = scores.sigmoid()
original_scores = scores
if self.bias is not None:
scores = scores + self.bias
if self.n_groups > 1:
scores = scores.view(x.size(0), self.n_groups, -1)
if self.bias is None:
group_scores = scores.amax(dim=-1)
else:
group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1)
indices = group_scores.topk(self.topk_groups, dim=-1)[1]
mask = scores.new_ones(x.size(0), self.n_groups, dtype=bool).scatter_(1, indices, False)
scores = scores.masked_fill_(mask.unsqueeze(-1), float("-inf")).flatten(1)
indices = scores.topk(self.topk, dim=-1)[1]
weights = original_scores.gather(1, indices)
if self.score_func == "sigmoid":
weights /= weights.sum(dim=-1, keepdim=True)
weights *= self.route_scale
return weights, indices
class Expert(nn.Module):
"""
Expert layer for Mixture-of-Experts (MoE) models.
Attributes:
w1 (nn.Module): Linear layer for input-to-hidden transformation.
w2 (nn.Module): Linear layer for hidden-to-output transformation.
w3 (nn.Module): Additional linear layer for feature transformation.
"""
def __init__(self, dim: int, inter_dim: int):
"""
Initializes the Expert layer.
Args:
dim (int): Input and output dimensionality.
inter_dim (int): Hidden layer dimensionality.
"""
super().__init__()
self.w1 = Linear(dim, inter_dim)
self.w2 = Linear(inter_dim, dim)
self.w3 = Linear(dim, inter_dim)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the Expert layer.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after expert computation.
"""
return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x))
class MoE(nn.Module):
"""
Mixture-of-Experts (MoE) module.
Attributes:
dim (int): Dimensionality of input features.
n_routed_experts (int): Total number of experts in the model.
n_local_experts (int): Number of experts handled locally in distributed systems.
n_activated_experts (int): Number of experts activated for each input.
gate (nn.Module): Gating mechanism to route inputs to experts.
experts (nn.ModuleList): List of expert modules.
shared_experts (nn.Module): Shared experts applied to all inputs.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the MoE module.
Args:
args (ModelArgs): Model arguments containing MoE parameters.
"""
super().__init__()
self.dim = args.dim
assert args.n_routed_experts % world_size == 0, f"Number of experts must be divisible by world size (world_size={world_size})"
self.n_routed_experts = args.n_routed_experts
self.n_local_experts = args.n_routed_experts // world_size
self.n_activated_experts = args.n_activated_experts
self.experts_start_idx = rank * self.n_local_experts
self.experts_end_idx = self.experts_start_idx + self.n_local_experts
self.gate = Gate(args)
self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None
for i in range(self.n_routed_experts)])
self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim, reduce_output=False)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass for the MoE module.
Args:
x (torch.Tensor): Input tensor.
Returns:
torch.Tensor: Output tensor after expert routing and computation.
"""
shape = x.size()
x = x.view(-1, self.dim)
weights, indices = self.gate(x)
y = torch.zeros_like(x, dtype=torch.float32)
counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist()
for i in range(self.experts_start_idx, self.experts_end_idx):
if counts[i] == 0:
continue
expert = self.experts[i]
idx, top = torch.where(indices == i)
y[idx] += expert(x[idx]) * weights[idx, top, None]
y += self.shared_experts(x)
if world_size > 1:
dist.all_reduce(y)
return y.type_as(x).view(shape)
class Block(nn.Module):
"""
Transformer block combining attention and feed-forward layers.
Attributes:
attn (nn.Module): Attention layer (MLA).
ffn (nn.Module): Feed-forward network (MLP or MoE).
attn_norm (nn.Module): Layer normalization for attention.
ffn_norm (nn.Module): Layer normalization for feed-forward network.
"""
def __init__(self, layer_id: int, args: ModelArgs):
"""
Initializes the Transformer block.
Args:
layer_id (int): Layer index in the transformer.
args (ModelArgs): Model arguments containing block parameters.
"""
super().__init__()
self.attn = MLA(args)
self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
self.attn_norm = RMSNorm(args.dim)
self.ffn_norm = RMSNorm(args.dim)
def forward(self, x: torch.Tensor, residual: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
"""
Forward pass for the Transformer block.
Args:
x (torch.Tensor): Input tensor.
start_pos (int): Starting position in the sequence.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
Returns:
torch.Tensor: Output tensor after block computation.
"""
if residual is None:
x, residual = self.attn_norm(x), x
else:
x, residual = self.attn_norm(x, residual)
x = self.attn(x, start_pos, freqs_cis, mask)
x, residual = self.ffn_norm(x, residual)
x = self.ffn(x)
return x, residual
class Transformer(nn.Module):
"""
Transformer model with positional embeddings, multiple layers, and output projection.
Attributes:
max_seq_len (int): Maximum sequence length for the transformer.
embed (nn.Module): Embedding layer for input tokens.
layers (torch.nn.ModuleList): List of transformer blocks.
norm (nn.Module): Layer normalization applied after all blocks.
head (nn.Module): Output projection layer mapping to vocabulary size.
freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
"""
def __init__(self, args: ModelArgs):
"""
Initializes the Transformer model.
Args:
args (ModelArgs): Model arguments containing transformer parameters.
"""
global world_size, rank
world_size = dist.get_world_size() if dist.is_initialized() else 1
rank = dist.get_rank() if dist.is_initialized() else 0
Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
Linear.scale_fmt = args.scale_fmt
super().__init__()
self.max_seq_len = args.max_seq_len
self.embed = ParallelEmbedding(args.vocab_size, args.dim)
self.layers = torch.nn.ModuleList()
for layer_id in range(args.n_layers):
self.layers.append(Block(layer_id, args))
self.norm = RMSNorm(args.dim)
# lm_head in the checkpoint is stored in bf16, while the parameter here is stored in fp32 for easier computation of logits later.
self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.float32)
self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)
@torch.inference_mode()
def forward(self, tokens: torch.Tensor, start_pos: int = 0):
"""
Forward pass for the Transformer model.
Args:
tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len).
start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0.
Returns:
torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
"""
seqlen = tokens.size(1)
freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen]
mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1) if seqlen > 1 else None
h, residual = self.embed(tokens), None
for layer in self.layers:
h, residual = layer(h, residual, start_pos, freqs_cis, mask)
h, _ = self.norm(h, residual)
logits = self.head(h[:, -1].float())
if world_size > 1:
all_logits = [torch.empty_like(logits) for _ in range(world_size)]
dist.all_gather(all_logits, logits)
logits = torch.cat(all_logits, dim=-1)
return logits
if __name__ == "__main__":
torch.set_default_dtype(torch.bfloat16)
torch.set_default_device("cuda")
torch.manual_seed(0)
args = ModelArgs()
x = torch.randint(0, args.vocab_size, (2, 128))
model = Transformer(args)
print(model(x).size())