|
import os |
|
import json |
|
from argparse import ArgumentParser |
|
from typing import List |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from transformers import AutoTokenizer |
|
from safetensors.torch import load_model |
|
|
|
from model import Transformer, ModelArgs |
|
|
|
|
|
def sample(logits, temperature: float = 1.0): |
|
logits = logits / max(temperature, 1e-5) |
|
probs = torch.softmax(logits, dim=-1) |
|
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1) |
|
|
|
|
|
@torch.inference_mode() |
|
def generate( |
|
model: Transformer, |
|
prompt_tokens: List[List[int]], |
|
max_new_tokens: int, |
|
eos_id: int, |
|
temperature: float = 1.0 |
|
) -> List[List[int]]: |
|
prompt_lens = [len(t) for t in prompt_tokens] |
|
assert max(prompt_lens) <= model.max_seq_len |
|
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens)) |
|
tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda") |
|
for i, t in enumerate(prompt_tokens): |
|
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda") |
|
prev_pos = 0 |
|
finished = torch.tensor([False] * len(prompt_tokens), device="cuda") |
|
prompt_mask = tokens != -1 |
|
for cur_pos in range(min(prompt_lens), total_len): |
|
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos) |
|
if temperature > 0: |
|
next_token = sample(logits, temperature) |
|
else: |
|
next_token = logits.argmax(dim=-1) |
|
next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token) |
|
tokens[:, cur_pos] = next_token |
|
finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id) |
|
prev_pos = cur_pos |
|
if finished.all(): |
|
break |
|
completion_tokens = [] |
|
for i, toks in enumerate(tokens.tolist()): |
|
toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens] |
|
if eos_id in toks: |
|
toks = toks[:toks.index(eos_id)] |
|
completion_tokens.append(toks) |
|
return completion_tokens |
|
|
|
|
|
def main( |
|
ckpt_path: str, |
|
config: str, |
|
input_file: str = "", |
|
interactive: bool = True, |
|
max_new_tokens: int = 100, |
|
temperature: float = 1.0, |
|
) -> None: |
|
world_size = int(os.getenv("WORLD_SIZE", "1")) |
|
rank = int(os.getenv("RANK", "0")) |
|
local_rank = int(os.getenv("LOCAL_RANK", "0")) |
|
if world_size > 1: |
|
dist.init_process_group("nccl") |
|
global print |
|
if rank != 0: |
|
print = lambda *_, **__: None |
|
torch.cuda.set_device(local_rank) |
|
torch.set_default_dtype(torch.bfloat16) |
|
torch.set_num_threads(8) |
|
torch.manual_seed(965) |
|
with open(config) as f: |
|
args = ModelArgs(**json.load(f)) |
|
print(args) |
|
with torch.device("cuda"): |
|
model = Transformer(args) |
|
tokenizer = AutoTokenizer.from_pretrained(ckpt_path) |
|
tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0]) |
|
load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors")) |
|
|
|
if interactive: |
|
messages = [] |
|
while True: |
|
if world_size == 1: |
|
prompt = input(">>> ") |
|
elif rank == 0: |
|
prompt = input(">>> ") |
|
objects = [prompt] |
|
dist.broadcast_object_list(objects, 0) |
|
else: |
|
objects = [None] |
|
dist.broadcast_object_list(objects, 0) |
|
prompt = objects[0] |
|
if prompt == "/exit": |
|
break |
|
elif prompt == "/clear": |
|
messages.clear() |
|
continue |
|
messages.append({"role": "user", "content": prompt}) |
|
prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True) |
|
completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature) |
|
completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True) |
|
print(completion) |
|
messages.append({"role": "assistant", "content": completion}) |
|
else: |
|
with open(input_file) as f: |
|
prompts = [line.strip() for line in f.readlines()] |
|
assert len(prompts) <= args.max_batch_size |
|
prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts] |
|
completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature) |
|
completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True) |
|
for prompt, completion in zip(prompts, completions): |
|
print("Prompt:", prompt) |
|
print("Completion:", completion) |
|
print() |
|
|
|
if world_size > 1: |
|
dist.destroy_process_group() |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = ArgumentParser() |
|
parser.add_argument("--ckpt-path", type=str, required=True) |
|
parser.add_argument("--config", type=str, required=True) |
|
parser.add_argument("--input-file", type=str, default="") |
|
parser.add_argument("--interactive", action="store_true") |
|
parser.add_argument("--max-new-tokens", type=int, default=200) |
|
parser.add_argument("--temperature", type=float, default=0.2) |
|
args = parser.parse_args() |
|
assert args.input_file or args.interactive |
|
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature) |
|
|