deepdml's picture
Update README.md
5b55008 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-tiny
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Medium en
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: en
          split: test
          args: en
        metrics:
          - type: wer
            value: 25.86151801007235
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: en_us
          split: test
        metrics:
          - type: wer
            value: 15.97
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: facebook/voxpopuli
          type: facebook/voxpopuli
          config: en
          split: test
        metrics:
          - type: wer
            value: 18.48
            name: WER
pipeline_tag: automatic-speech-recognition

Whisper Tiny en

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6106
  • Wer: 25.8615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.4769 1.0974 1000 0.6212 26.6080
0.346 3.0922 2000 0.6184 26.1229
0.3654 5.087 3000 0.6130 26.0782
0.2858 7.0818 4000 0.6196 26.2060
0.3308 9.0766 5000 0.6106 25.8615

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1