deepdml's picture
Update README.md
d8751c8 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-small
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Medium en
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: en
          split: test
          args: en
        metrics:
          - type: wer
            value: 13.296009407674415
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: en_us
          split: test
        metrics:
          - type: wer
            value: 8.89
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: facebook/voxpopuli
          type: facebook/voxpopuli
          config: en
          split: test
        metrics:
          - type: wer
            value: 11.86
            name: WER
pipeline_tag: automatic-speech-recognition

Whisper Small en

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3817
  • Wer: 13.2960

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.2368 1.0974 1000 0.3761 14.2483
0.1107 3.0922 2000 0.4002 14.1083
0.1615 5.087 3000 0.3839 13.6105
0.0793 7.0818 4000 0.4053 13.8265
0.1457 9.0766 5000 0.3817 13.2960

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1