deepdml's picture
Update metadata with huggingface_hub
f9cc073 verified
|
raw
history blame
2.59 kB
metadata
language:
  - it
license: apache-2.0
tags:
  - generated_from_trainer
base_model: openai/whisper-medium
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Medium it
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: it
          split: test
          args: it
        metrics:
          - type: wer
            value: 5.709779804285139
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: it_it
          split: test
        metrics:
          - type: wer
            value: 4.47
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: facebook/multilingual_librispeech
          type: facebook/multilingual_librispeech
          config: italian
          split: test
        metrics:
          - type: wer
            value: 17.25
            name: WER

Whisper Medium it

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1462
  • Wer: 5.7098

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1755 0.1730 1000 0.1974 8.0595
0.157 0.3461 2000 0.1776 7.1199
0.1287 0.5191 3000 0.1622 6.5201
0.1287 0.6922 4000 0.1521 5.9863
0.1168 0.8652 5000 0.1462 5.7098

Framework versions

  • Transformers 4.42.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1