|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: summarise_v7 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# summarise_v7 |
|
|
|
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1204 |
|
- Rouge2 Precision: 0.2764 |
|
- Rouge2 Recall: 0.3441 |
|
- Rouge2 Fmeasure: 0.2853 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
max_input_length = 1280 |
|
|
|
max_output_length = 512 |
|
|
|
led.config.max_length = 512 |
|
|
|
led.config.min_length = 100 |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| 0.9594 | 0.22 | 10 | 1.3386 | 0.3393 | 0.3048 | 0.2973 | |
|
| 1.2189 | 0.44 | 20 | 1.1956 | 0.1935 | 0.314 | 0.2164 | |
|
| 1.0542 | 0.67 | 30 | 1.1580 | 0.2383 | 0.4133 | 0.2794 | |
|
| 1.5145 | 0.89 | 40 | 1.1204 | 0.2764 | 0.3441 | 0.2853 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.3 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 1.2.1 |
|
- Tokenizers 0.12.1 |
|
|