|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: summarise_v2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# summarise_v2 |
|
|
|
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.3235 |
|
- Rouge2 Precision: 0.018 |
|
- Rouge2 Recall: 0.0916 |
|
- Rouge2 Fmeasure: 0.0292 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| |
|
| 3.1721 | 0.08 | 10 | 2.7742 | 0.0107 | 0.0671 | 0.0178 | |
|
| 3.0802 | 0.16 | 20 | 2.7914 | 0.0111 | 0.0878 | 0.019 | |
|
| 3.0795 | 0.24 | 30 | 2.6954 | 0.0094 | 0.076 | 0.0157 | |
|
| 2.5806 | 0.32 | 40 | 2.6587 | 0.0028 | 0.0271 | 0.0046 | |
|
| 2.6553 | 0.4 | 50 | 2.5958 | 0.0084 | 0.0566 | 0.0143 | |
|
| 2.689 | 0.48 | 60 | 2.4857 | 0.0089 | 0.0733 | 0.015 | |
|
| 2.6642 | 0.56 | 70 | 2.4205 | 0.0069 | 0.0478 | 0.0116 | |
|
| 2.3768 | 0.64 | 80 | 2.3754 | 0.0127 | 0.0795 | 0.0215 | |
|
| 2.1949 | 0.72 | 90 | 2.3752 | 0.0155 | 0.1013 | 0.0258 | |
|
| 2.3257 | 0.8 | 100 | 2.3509 | 0.0155 | 0.1011 | 0.0261 | |
|
| 2.4053 | 0.88 | 110 | 2.3261 | 0.015 | 0.0901 | 0.0246 | |
|
| 2.9896 | 0.96 | 120 | 2.3235 | 0.018 | 0.0916 | 0.0292 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.21.3 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 1.2.1 |
|
- Tokenizers 0.12.1 |
|
|