ddwkim commited on
Commit
e44a5e2
1 Parent(s): 041e8d6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -1
README.md CHANGED
@@ -1,3 +1,124 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: "kr"
3
+ thumbnail:
4
+ tags:
5
+ - ASR
6
+ - CTC
7
+ - Attention
8
+ - Branchformer
9
+ - pytorch
10
+ - speechbrain
11
+ license: "apache-2.0"
12
+ datasets:
13
+ - ksponspeech
14
+ metrics:
15
+ - wer
16
+ - cer
17
  ---
18
+
19
+ <iframe src="https://ghbtns.com/github-btn.html?user=speechbrain&repo=speechbrain&type=star&count=true&size=large&v=2" frameborder="0" scrolling="0" width="170" height="30" title="GitHub"></iframe>
20
+ <br/><br/>
21
+
22
+ # Branchformer for KsponSpeech (with Transformer LM)
23
+
24
+ This repository provides all the necessary tools to perform automatic speech
25
+ recognition from an end-to-end system pretrained on KsponSpeech (Kr) within
26
+ SpeechBrain. For a better experience, we encourage you to learn more about
27
+ [SpeechBrain](https://speechbrain.github.io).
28
+ The performance of the model is the following:
29
+
30
+ | Release | eval clean CER | eval other CER | GPUs |
31
+ | :------: | :------------: | :------------: | :---------: |
32
+ | 04-16-24 | 7.33% | 7.99% | 2xA100 40GB |
33
+
34
+ ## Pipeline description
35
+
36
+ This ASR system is composed of 3 different but linked blocks:
37
+ - Tokenizer (unigram) that transforms words into subword units and trained with
38
+ the train transcriptions of KsponSpeech.
39
+ - Neural language model (Transformer LM) trained on the train transcriptions of KsponSpeech
40
+ - Acoustic model made of a branchformer encoder and a joint decoder with CTC +
41
+ transformer. Hence, the decoding also incorporates the CTC probabilities.
42
+ ## Install SpeechBrain
43
+ First of all, please install SpeechBrain with the following command:
44
+ ```
45
+ !pip install git+https://github.com/speechbrain/speechbrain.git
46
+ ```
47
+ Please notice that we encourage you to read our tutorials and learn more about
48
+ [SpeechBrain](https://speechbrain.github.io).
49
+ ### Transcribing your own audio files (in Korean)
50
+ ```python
51
+ from speechbrain.pretrained import EncoderDecoderASR
52
+ asr_model = EncoderDecoderASR.from_hparams(source="ddwkim/asr-branchformer-transformerlm-ksponspeech", savedir="pretrained_models/asr-branchformer-transformerlm-ksponspeech", run_opts={"device":"cuda"})
53
+ asr_model.transcribe_file("ddwkim/asr-branchformer-transformerlm-ksponspeech/record_0_16k.wav")
54
+ ```
55
+
56
+ ### Inference on GPU
57
+
58
+ To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.
59
+
60
+ ## Parallel Inference on a Batch
61
+
62
+ Please, [see this Colab notebook](https://colab.research.google.com/drive/1finp9pfmGRzWHCAPNkqAH2yGH6k_BbPA?usp=sharing) on using the pretrained model
63
+
64
+ ### Training
65
+
66
+ The model was trained with SpeechBrain (Commit hash: '4b3bf60').
67
+ To train it from scratch follow these steps:
68
+ 1. Clone SpeechBrain:
69
+ ```bash
70
+ git clone https://github.com/speechbrain/speechbrain/
71
+ ```
72
+ 2. Install it:
73
+ ```bash
74
+ cd speechbrain
75
+ pip install -r requirements.txt
76
+ pip install .
77
+ ```
78
+ 3. Run Training:
79
+ ```bash
80
+ cd recipes/KsponSpeech/ASR/transformer
81
+ python train.py hparams/conformer_medium.yaml --data_folder=your_data_folder
82
+ ```
83
+ You can find our training results (models, logs, etc) at the subdirectories.
84
+
85
+ ### Limitations
86
+
87
+ The SpeechBrain team does not provide any warranty on the performance achieved by this model when used on other datasets.
88
+
89
+ # **About SpeechBrain**
90
+
91
+ - Website: https://speechbrain.github.io/
92
+ - Code: https://github.com/speechbrain/speechbrain/
93
+ - HuggingFace: https://huggingface.co/speechbrain/
94
+
95
+ # **Citing SpeechBrain**
96
+
97
+ Please, cite SpeechBrain if you use it for your research or business.
98
+ ```bibtex
99
+ @misc{speechbrain,
100
+ title={{SpeechBrain}: A General-Purpose Speech Toolkit},
101
+ author={Mirco Ravanelli and Titouan Parcollet and Peter Plantinga and Aku Rouhe and Samuele Cornell and Loren Lugosch and Cem Subakan and Nauman Dawalatabad and Abdelwahab Heba and Jianyuan Zhong and Ju-Chieh Chou and Sung-Lin Yeh and Szu-Wei Fu and Chien-Feng Liao and Elena Rastorgueva and François Grondin and William Aris and Hwidong Na and Yan Gao and Renato De Mori and Yoshua Bengio},
102
+ year={2021},
103
+ eprint={2106.04624},
104
+ archivePrefix={arXiv},
105
+ primaryClass={eess.AS},
106
+ note={arXiv:2106.04624}
107
+ }
108
+ ```
109
+
110
+ # Citing KsponSpeech dataset
111
+ ```bibtex
112
+ @Article{app10196936,
113
+ AUTHOR = {Bang, Jeong-Uk and Yun, Seung and Kim, Seung-Hi and Choi, Mu-Yeol and Lee, Min-Kyu and Kim, Yeo-Jeong and Kim, Dong-Hyun and Park, Jun and Lee, Young-Jik and Kim, Sang-Hun},
114
+ TITLE = {KsponSpeech: Korean Spontaneous Speech Corpus for Automatic Speech Recognition},
115
+ JOURNAL = {Applied Sciences},
116
+ VOLUME = {10},
117
+ YEAR = {2020},
118
+ NUMBER = {19},
119
+ ARTICLE-NUMBER = {6936},
120
+ URL = {https://www.mdpi.com/2076-3417/10/19/6936},
121
+ ISSN = {2076-3417},
122
+ DOI = {10.3390/app10196936}
123
+ }
124
+ ```