ddoc's picture
Upload 188 files
81f4d3a
# Copyright (C) 2023 Deforum LLC
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# Contact the authors: https://deforum.github.io/
import os
import pandas as pd
import cv2
import numpy as np
import numexpr
import gc
import random
import PIL
import time
from PIL import Image, ImageOps
from .generate import generate, isJson
from .noise import add_noise
from .animation import anim_frame_warp
from .animation_key_frames import DeformAnimKeys, LooperAnimKeys
from .video_audio_utilities import get_frame_name, get_next_frame, render_preview
from .depth import DepthModel
from .colors import maintain_colors
from .parseq_adapter import ParseqAdapter
from .seed import next_seed
from .image_sharpening import unsharp_mask
from .load_images import get_mask, load_img, load_image, get_mask_from_file
from .hybrid_video import (
hybrid_generation, hybrid_composite, get_matrix_for_hybrid_motion, get_matrix_for_hybrid_motion_prev, get_flow_for_hybrid_motion, get_flow_for_hybrid_motion_prev, image_transform_ransac,
image_transform_optical_flow, get_flow_from_images, abs_flow_to_rel_flow, rel_flow_to_abs_flow)
from .save_images import save_image
from .composable_masks import compose_mask_with_check
from .settings import save_settings_from_animation_run
from .deforum_controlnet import unpack_controlnet_vids, is_controlnet_enabled
from .subtitle_handler import init_srt_file, write_frame_subtitle, format_animation_params
from .resume import get_resume_vars
from .masks import do_overlay_mask
from .prompt import prepare_prompt
from modules.shared import opts, cmd_opts, state, sd_model
from modules import lowvram, devices, sd_hijack
from .RAFT import RAFT
from deforum_api import JobStatusTracker
def render_animation(args, anim_args, video_args, parseq_args, loop_args, controlnet_args, root):
if opts.data.get("deforum_save_gen_info_as_srt", False): # create .srt file and set timeframe mechanism using FPS
srt_filename = os.path.join(args.outdir, f"{root.timestring}.srt")
srt_frame_duration = init_srt_file(srt_filename, video_args.fps)
if anim_args.animation_mode in ['2D', '3D']:
# handle hybrid video generation
if anim_args.hybrid_composite != 'None' or anim_args.hybrid_motion in ['Affine', 'Perspective', 'Optical Flow']:
args, anim_args, inputfiles = hybrid_generation(args, anim_args, root)
# path required by hybrid functions, even if hybrid_comp_save_extra_frames is False
hybrid_frame_path = os.path.join(args.outdir, 'hybridframes')
# initialize prev_flow
if anim_args.hybrid_motion == 'Optical Flow':
prev_flow = None
if loop_args.use_looper:
print("Using Guided Images mode: seed_behavior will be set to 'schedule' and 'strength_0_no_init' to False")
if args.strength == 0:
raise RuntimeError("Strength needs to be greater than 0 in Init tab")
args.strength_0_no_init = False
args.seed_behavior = "schedule"
if not isJson(loop_args.init_images):
raise RuntimeError("The images set for use with keyframe-guidance are not in a proper JSON format")
# handle controlnet video input frames generation
if is_controlnet_enabled(controlnet_args):
unpack_controlnet_vids(args, anim_args, controlnet_args)
# initialise Parseq adapter
parseq_adapter = ParseqAdapter(parseq_args, anim_args, video_args, controlnet_args, loop_args)
# expand key frame strings to values
keys = DeformAnimKeys(anim_args, args.seed) if not parseq_adapter.use_parseq else parseq_adapter.anim_keys
loopSchedulesAndData = LooperAnimKeys(loop_args, anim_args, args.seed) if not parseq_adapter.use_parseq else parseq_adapter.looper_keys
# create output folder for the batch
os.makedirs(args.outdir, exist_ok=True)
print(f"Saving animation frames to:\n{args.outdir}")
# save settings.txt file for the current run
save_settings_from_animation_run(args, anim_args, parseq_args, loop_args, controlnet_args, video_args, root)
# resume from timestring
if anim_args.resume_from_timestring:
root.timestring = anim_args.resume_timestring
# Always enable pseudo-3d with parseq. No need for an extra toggle:
# Whether it's used or not in practice is defined by the schedules
if parseq_adapter.use_parseq:
anim_args.flip_2d_perspective = True
# expand prompts out to per-frame
if parseq_adapter.manages_prompts():
prompt_series = keys.prompts
else:
prompt_series = pd.Series([np.nan for a in range(anim_args.max_frames)])
for i, prompt in root.animation_prompts.items():
if str(i).isdigit():
prompt_series[int(i)] = prompt
else:
prompt_series[int(numexpr.evaluate(i))] = prompt
prompt_series = prompt_series.ffill().bfill()
# check for video inits
using_vid_init = anim_args.animation_mode == 'Video Input'
# load depth model for 3D
predict_depths = (anim_args.animation_mode == '3D' and anim_args.use_depth_warping) or anim_args.save_depth_maps
predict_depths = predict_depths or (anim_args.hybrid_composite and anim_args.hybrid_comp_mask_type in ['Depth', 'Video Depth'])
predict_depths = predict_depths and not args.motion_preview_mode
if predict_depths:
keep_in_vram = opts.data.get("deforum_keep_3d_models_in_vram")
device = ('cpu' if cmd_opts.lowvram or cmd_opts.medvram else root.device)
depth_model = DepthModel(root.models_path, device, root.half_precision, keep_in_vram=keep_in_vram, depth_algorithm=anim_args.depth_algorithm, Width=args.W, Height=args.H,
midas_weight=anim_args.midas_weight)
# depth-based hybrid composite mask requires saved depth maps
if anim_args.hybrid_composite != 'None' and anim_args.hybrid_comp_mask_type == 'Depth':
anim_args.save_depth_maps = True
else:
depth_model = None
anim_args.save_depth_maps = False
raft_model = None
load_raft = (anim_args.optical_flow_cadence == "RAFT" and int(anim_args.diffusion_cadence) > 1) or \
(anim_args.hybrid_motion == "Optical Flow" and anim_args.hybrid_flow_method == "RAFT") or \
(anim_args.optical_flow_redo_generation == "RAFT")
load_raft = load_raft and not args.motion_preview_mode
if load_raft:
print("Loading RAFT model...")
raft_model = RAFT()
# state for interpolating between diffusion steps
turbo_steps = 1 if using_vid_init else int(anim_args.diffusion_cadence)
turbo_prev_image, turbo_prev_frame_idx = None, 0
turbo_next_image, turbo_next_frame_idx = None, 0
# initialize vars
prev_img = None
color_match_sample = None
start_frame = 0
# resume animation (requires at least two frames - see function)
if anim_args.resume_from_timestring:
# determine last frame and frame to start on
prev_frame, next_frame, prev_img, next_img = get_resume_vars(
folder=args.outdir,
timestring=anim_args.resume_timestring,
cadence=turbo_steps
)
# set up turbo step vars
if turbo_steps > 1:
turbo_prev_image, turbo_prev_frame_idx = prev_img, prev_frame
turbo_next_image, turbo_next_frame_idx = next_img, next_frame
# advance start_frame to next frame
start_frame = next_frame + 1
frame_idx = start_frame
# reset the mask vals as they are overwritten in the compose_mask algorithm
mask_vals = {}
noise_mask_vals = {}
mask_vals['everywhere'] = Image.new('1', (args.W, args.H), 1)
noise_mask_vals['everywhere'] = Image.new('1', (args.W, args.H), 1)
mask_image = None
if args.use_init and ((args.init_image != None and args.init_image != '') or args.init_image_box != None):
_, mask_image = load_img(args.init_image,
args.init_image_box,
shape=(args.W, args.H),
use_alpha_as_mask=args.use_alpha_as_mask)
mask_vals['video_mask'] = mask_image
noise_mask_vals['video_mask'] = mask_image
# Grab the first frame masks since they wont be provided until next frame
# Video mask overrides the init image mask, also, won't be searching for init_mask if use_mask_video is set
# Made to solve https://github.com/deforum-art/deforum-for-automatic1111-webui/issues/386
if anim_args.use_mask_video:
args.mask_file = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args)
root.noise_mask = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args)
mask_vals['video_mask'] = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args)
noise_mask_vals['video_mask'] = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args)
elif mask_image is None and args.use_mask:
mask_vals['video_mask'] = get_mask(args)
noise_mask_vals['video_mask'] = get_mask(args) # TODO?: add a different default noisc mask
# get color match for 'Image' color coherence only once, before loop
if anim_args.color_coherence == 'Image':
color_match_sample = load_image(anim_args.color_coherence_image_path, None)
color_match_sample = color_match_sample.resize((args.W, args.H), PIL.Image.LANCZOS)
color_match_sample = cv2.cvtColor(np.array(color_match_sample), cv2.COLOR_RGB2BGR)
# Webui
state.job_count = anim_args.max_frames
last_preview_frame = 0
while frame_idx < anim_args.max_frames:
# Webui
state.job = f"frame {frame_idx + 1}/{anim_args.max_frames}"
state.job_no = frame_idx + 1
if state.skipped:
print("\n** PAUSED **")
state.skipped = False
while not state.skipped:
time.sleep(0.1)
print("** RESUMING **")
print(f"\033[36mAnimation frame: \033[0m{frame_idx}/{anim_args.max_frames} ")
noise = keys.noise_schedule_series[frame_idx]
strength = keys.strength_schedule_series[frame_idx]
scale = keys.cfg_scale_schedule_series[frame_idx]
contrast = keys.contrast_schedule_series[frame_idx]
kernel = int(keys.kernel_schedule_series[frame_idx])
sigma = keys.sigma_schedule_series[frame_idx]
amount = keys.amount_schedule_series[frame_idx]
threshold = keys.threshold_schedule_series[frame_idx]
cadence_flow_factor = keys.cadence_flow_factor_schedule_series[frame_idx]
redo_flow_factor = keys.redo_flow_factor_schedule_series[frame_idx]
hybrid_comp_schedules = {
"alpha": keys.hybrid_comp_alpha_schedule_series[frame_idx],
"mask_blend_alpha": keys.hybrid_comp_mask_blend_alpha_schedule_series[frame_idx],
"mask_contrast": keys.hybrid_comp_mask_contrast_schedule_series[frame_idx],
"mask_auto_contrast_cutoff_low": int(keys.hybrid_comp_mask_auto_contrast_cutoff_low_schedule_series[frame_idx]),
"mask_auto_contrast_cutoff_high": int(keys.hybrid_comp_mask_auto_contrast_cutoff_high_schedule_series[frame_idx]),
"flow_factor": keys.hybrid_flow_factor_schedule_series[frame_idx]
}
scheduled_sampler_name = None
scheduled_clipskip = None
scheduled_noise_multiplier = None
scheduled_ddim_eta = None
scheduled_ancestral_eta = None
mask_seq = None
noise_mask_seq = None
if anim_args.enable_steps_scheduling and keys.steps_schedule_series[frame_idx] is not None:
args.steps = int(keys.steps_schedule_series[frame_idx])
if anim_args.enable_sampler_scheduling and keys.sampler_schedule_series[frame_idx] is not None:
scheduled_sampler_name = keys.sampler_schedule_series[frame_idx].casefold()
if anim_args.enable_clipskip_scheduling and keys.clipskip_schedule_series[frame_idx] is not None:
scheduled_clipskip = int(keys.clipskip_schedule_series[frame_idx])
if anim_args.enable_noise_multiplier_scheduling and keys.noise_multiplier_schedule_series[frame_idx] is not None:
scheduled_noise_multiplier = float(keys.noise_multiplier_schedule_series[frame_idx])
if anim_args.enable_ddim_eta_scheduling and keys.ddim_eta_schedule_series[frame_idx] is not None:
scheduled_ddim_eta = float(keys.ddim_eta_schedule_series[frame_idx])
if anim_args.enable_ancestral_eta_scheduling and keys.ancestral_eta_schedule_series[frame_idx] is not None:
scheduled_ancestral_eta = float(keys.ancestral_eta_schedule_series[frame_idx])
if args.use_mask and keys.mask_schedule_series[frame_idx] is not None:
mask_seq = keys.mask_schedule_series[frame_idx]
if anim_args.use_noise_mask and keys.noise_mask_schedule_series[frame_idx] is not None:
noise_mask_seq = keys.noise_mask_schedule_series[frame_idx]
if args.use_mask and not anim_args.use_noise_mask:
noise_mask_seq = mask_seq
depth = None
if anim_args.animation_mode == '3D' and (cmd_opts.lowvram or cmd_opts.medvram):
# Unload the main checkpoint and load the depth model
lowvram.send_everything_to_cpu()
sd_hijack.model_hijack.undo_hijack(sd_model)
devices.torch_gc()
if predict_depths: depth_model.to(root.device)
if turbo_steps == 1 and opts.data.get("deforum_save_gen_info_as_srt"):
params_to_print = opts.data.get("deforum_save_gen_info_as_srt_params", ['Seed'])
params_string = format_animation_params(keys, prompt_series, frame_idx, params_to_print)
write_frame_subtitle(srt_filename, frame_idx, srt_frame_duration, f"F#: {frame_idx}; Cadence: false; Seed: {args.seed}; {params_string}")
params_string = None
# emit in-between frames
if turbo_steps > 1:
tween_frame_start_idx = max(start_frame, frame_idx - turbo_steps)
cadence_flow = None
for tween_frame_idx in range(tween_frame_start_idx, frame_idx):
# update progress during cadence
state.job = f"frame {tween_frame_idx + 1}/{anim_args.max_frames}"
state.job_no = tween_frame_idx + 1
# cadence vars
tween = float(tween_frame_idx - tween_frame_start_idx + 1) / float(frame_idx - tween_frame_start_idx)
advance_prev = turbo_prev_image is not None and tween_frame_idx > turbo_prev_frame_idx
advance_next = tween_frame_idx > turbo_next_frame_idx
# optical flow cadence setup before animation warping
if anim_args.animation_mode in ['2D', '3D'] and anim_args.optical_flow_cadence != 'None':
if keys.strength_schedule_series[tween_frame_start_idx] > 0:
if cadence_flow is None and turbo_prev_image is not None and turbo_next_image is not None:
cadence_flow = get_flow_from_images(turbo_prev_image, turbo_next_image, anim_args.optical_flow_cadence, raft_model) / 2
turbo_next_image = image_transform_optical_flow(turbo_next_image, -cadence_flow, 1)
if opts.data.get("deforum_save_gen_info_as_srt"):
params_to_print = opts.data.get("deforum_save_gen_info_as_srt_params", ['Seed'])
params_string = format_animation_params(keys, prompt_series, tween_frame_idx, params_to_print)
write_frame_subtitle(srt_filename, tween_frame_idx, srt_frame_duration, f"F#: {tween_frame_idx}; Cadence: {tween < 1.0}; Seed: {args.seed}; {params_string}")
params_string = None
print(f"Creating in-between {'' if cadence_flow is None else anim_args.optical_flow_cadence + ' optical flow '}cadence frame: {tween_frame_idx}; tween:{tween:0.2f};")
if depth_model is not None:
assert (turbo_next_image is not None)
depth = depth_model.predict(turbo_next_image, anim_args.midas_weight, root.half_precision)
if advance_prev:
turbo_prev_image, _ = anim_frame_warp(turbo_prev_image, args, anim_args, keys, tween_frame_idx, depth_model, depth=depth, device=root.device, half_precision=root.half_precision)
if advance_next:
turbo_next_image, _ = anim_frame_warp(turbo_next_image, args, anim_args, keys, tween_frame_idx, depth_model, depth=depth, device=root.device, half_precision=root.half_precision)
# hybrid video motion - warps turbo_prev_image or turbo_next_image to match motion
if tween_frame_idx > 0:
if anim_args.hybrid_motion in ['Affine', 'Perspective']:
if anim_args.hybrid_motion_use_prev_img:
matrix = get_matrix_for_hybrid_motion_prev(tween_frame_idx - 1, (args.W, args.H), inputfiles, prev_img, anim_args.hybrid_motion)
if advance_prev:
turbo_prev_image = image_transform_ransac(turbo_prev_image, matrix, anim_args.hybrid_motion)
if advance_next:
turbo_next_image = image_transform_ransac(turbo_next_image, matrix, anim_args.hybrid_motion)
else:
matrix = get_matrix_for_hybrid_motion(tween_frame_idx - 1, (args.W, args.H), inputfiles, anim_args.hybrid_motion)
if advance_prev:
turbo_prev_image = image_transform_ransac(turbo_prev_image, matrix, anim_args.hybrid_motion)
if advance_next:
turbo_next_image = image_transform_ransac(turbo_next_image, matrix, anim_args.hybrid_motion)
if anim_args.hybrid_motion in ['Optical Flow']:
if anim_args.hybrid_motion_use_prev_img:
flow = get_flow_for_hybrid_motion_prev(tween_frame_idx - 1, (args.W, args.H), inputfiles, hybrid_frame_path, prev_flow, prev_img, anim_args.hybrid_flow_method, raft_model,
anim_args.hybrid_flow_consistency, anim_args.hybrid_consistency_blur, anim_args.hybrid_comp_save_extra_frames)
if advance_prev:
turbo_prev_image = image_transform_optical_flow(turbo_prev_image, flow, hybrid_comp_schedules['flow_factor'])
if advance_next:
turbo_next_image = image_transform_optical_flow(turbo_next_image, flow, hybrid_comp_schedules['flow_factor'])
prev_flow = flow
else:
flow = get_flow_for_hybrid_motion(tween_frame_idx - 1, (args.W, args.H), inputfiles, hybrid_frame_path, prev_flow, anim_args.hybrid_flow_method, raft_model,
anim_args.hybrid_flow_consistency, anim_args.hybrid_consistency_blur, anim_args.hybrid_comp_save_extra_frames)
if advance_prev:
turbo_prev_image = image_transform_optical_flow(turbo_prev_image, flow, hybrid_comp_schedules['flow_factor'])
if advance_next:
turbo_next_image = image_transform_optical_flow(turbo_next_image, flow, hybrid_comp_schedules['flow_factor'])
prev_flow = flow
# do optical flow cadence after animation warping
if cadence_flow is not None:
cadence_flow = abs_flow_to_rel_flow(cadence_flow, args.W, args.H)
cadence_flow, _ = anim_frame_warp(cadence_flow, args, anim_args, keys, tween_frame_idx, depth_model, depth=depth, device=root.device, half_precision=root.half_precision)
cadence_flow_inc = rel_flow_to_abs_flow(cadence_flow, args.W, args.H) * tween
if advance_prev:
turbo_prev_image = image_transform_optical_flow(turbo_prev_image, cadence_flow_inc, cadence_flow_factor)
if advance_next:
turbo_next_image = image_transform_optical_flow(turbo_next_image, cadence_flow_inc, cadence_flow_factor)
turbo_prev_frame_idx = turbo_next_frame_idx = tween_frame_idx
if turbo_prev_image is not None and tween < 1.0:
img = turbo_prev_image * (1.0 - tween) + turbo_next_image * tween
else:
img = turbo_next_image
# intercept and override to grayscale
if anim_args.color_force_grayscale:
img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# overlay mask
if args.overlay_mask and (anim_args.use_mask_video or args.use_mask):
img = do_overlay_mask(args, anim_args, img, tween_frame_idx, True)
# get prev_img during cadence
prev_img = img
# current image update for cadence frames (left commented because it doesn't currently update the preview)
# state.current_image = Image.fromarray(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB))
# saving cadence frames
filename = f"{root.timestring}_{tween_frame_idx:09}.png"
cv2.imwrite(os.path.join(args.outdir, filename), img)
if anim_args.save_depth_maps:
depth_model.save(os.path.join(args.outdir, f"{root.timestring}_depth_{tween_frame_idx:09}.png"), depth)
# get color match for video outside of prev_img conditional
hybrid_available = anim_args.hybrid_composite != 'None' or anim_args.hybrid_motion in ['Optical Flow', 'Affine', 'Perspective']
if anim_args.color_coherence == 'Video Input' and hybrid_available:
if int(frame_idx) % int(anim_args.color_coherence_video_every_N_frames) == 0:
prev_vid_img = Image.open(os.path.join(args.outdir, 'inputframes', get_frame_name(anim_args.video_init_path) + f"{frame_idx:09}.jpg"))
prev_vid_img = prev_vid_img.resize((args.W, args.H), PIL.Image.LANCZOS)
color_match_sample = np.asarray(prev_vid_img)
color_match_sample = cv2.cvtColor(color_match_sample, cv2.COLOR_RGB2BGR)
# after 1st frame, prev_img exists
if prev_img is not None:
# apply transforms to previous frame
prev_img, depth = anim_frame_warp(prev_img, args, anim_args, keys, frame_idx, depth_model, depth=None, device=root.device, half_precision=root.half_precision)
# do hybrid compositing before motion
if anim_args.hybrid_composite == 'Before Motion':
args, prev_img = hybrid_composite(args, anim_args, frame_idx, prev_img, depth_model, hybrid_comp_schedules, root)
# hybrid video motion - warps prev_img to match motion, usually to prepare for compositing
if anim_args.hybrid_motion in ['Affine', 'Perspective']:
if anim_args.hybrid_motion_use_prev_img:
matrix = get_matrix_for_hybrid_motion_prev(frame_idx - 1, (args.W, args.H), inputfiles, prev_img, anim_args.hybrid_motion)
else:
matrix = get_matrix_for_hybrid_motion(frame_idx - 1, (args.W, args.H), inputfiles, anim_args.hybrid_motion)
prev_img = image_transform_ransac(prev_img, matrix, anim_args.hybrid_motion)
if anim_args.hybrid_motion in ['Optical Flow']:
if anim_args.hybrid_motion_use_prev_img:
flow = get_flow_for_hybrid_motion_prev(frame_idx - 1, (args.W, args.H), inputfiles, hybrid_frame_path, prev_flow, prev_img, anim_args.hybrid_flow_method, raft_model,
anim_args.hybrid_flow_consistency, anim_args.hybrid_consistency_blur, anim_args.hybrid_comp_save_extra_frames)
else:
flow = get_flow_for_hybrid_motion(frame_idx - 1, (args.W, args.H), inputfiles, hybrid_frame_path, prev_flow, anim_args.hybrid_flow_method, raft_model,
anim_args.hybrid_flow_consistency, anim_args.hybrid_consistency_blur, anim_args.hybrid_comp_save_extra_frames)
prev_img = image_transform_optical_flow(prev_img, flow, hybrid_comp_schedules['flow_factor'])
prev_flow = flow
# do hybrid compositing after motion (normal)
if anim_args.hybrid_composite == 'Normal':
args, prev_img = hybrid_composite(args, anim_args, frame_idx, prev_img, depth_model, hybrid_comp_schedules, root)
# apply color matching
if anim_args.color_coherence != 'None':
if color_match_sample is None:
color_match_sample = prev_img.copy()
else:
prev_img = maintain_colors(prev_img, color_match_sample, anim_args.color_coherence)
# intercept and override to grayscale
if anim_args.color_force_grayscale:
prev_img = cv2.cvtColor(prev_img, cv2.COLOR_BGR2GRAY)
prev_img = cv2.cvtColor(prev_img, cv2.COLOR_GRAY2BGR)
# apply scaling
contrast_image = (prev_img * contrast).round().astype(np.uint8)
# anti-blur
if amount > 0:
contrast_image = unsharp_mask(contrast_image, (kernel, kernel), sigma, amount, threshold, mask_image if args.use_mask else None)
# apply frame noising
if args.use_mask or anim_args.use_noise_mask:
root.noise_mask = compose_mask_with_check(root, args, noise_mask_seq, noise_mask_vals, Image.fromarray(cv2.cvtColor(contrast_image, cv2.COLOR_BGR2RGB)))
noised_image = add_noise(contrast_image, noise, args.seed, anim_args.noise_type,
(anim_args.perlin_w, anim_args.perlin_h, anim_args.perlin_octaves, anim_args.perlin_persistence),
root.noise_mask, args.invert_mask)
# use transformed previous frame as init for current
args.use_init = True
root.init_sample = Image.fromarray(cv2.cvtColor(noised_image, cv2.COLOR_BGR2RGB))
args.strength = max(0.0, min(1.0, strength))
args.scale = scale
# Pix2Pix Image CFG Scale - does *nothing* with non pix2pix checkpoints
args.pix2pix_img_cfg_scale = float(keys.pix2pix_img_cfg_scale_series[frame_idx])
# grab prompt for current frame
args.prompt = prompt_series[frame_idx]
if args.seed_behavior == 'schedule' or parseq_adapter.manages_seed():
args.seed = int(keys.seed_schedule_series[frame_idx])
if anim_args.enable_checkpoint_scheduling:
args.checkpoint = keys.checkpoint_schedule_series[frame_idx]
else:
args.checkpoint = None
# SubSeed scheduling
if anim_args.enable_subseed_scheduling:
root.subseed = int(keys.subseed_schedule_series[frame_idx])
root.subseed_strength = float(keys.subseed_strength_schedule_series[frame_idx])
if parseq_adapter.manages_seed():
anim_args.enable_subseed_scheduling = True
root.subseed = int(keys.subseed_schedule_series[frame_idx])
root.subseed_strength = keys.subseed_strength_schedule_series[frame_idx]
# set value back into the prompt - prepare and report prompt and seed
args.prompt = prepare_prompt(args.prompt, anim_args.max_frames, args.seed, frame_idx)
# grab init image for current frame
if using_vid_init:
init_frame = get_next_frame(args.outdir, anim_args.video_init_path, frame_idx, False)
print(f"Using video init frame {init_frame}")
args.init_image = init_frame
args.init_image_box = None # init_image_box not used in this case
args.strength = max(0.0, min(1.0, strength))
if anim_args.use_mask_video:
args.mask_file = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args)
root.noise_mask = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args)
mask_vals['video_mask'] = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args)
if args.use_mask:
args.mask_image = compose_mask_with_check(root, args, mask_seq, mask_vals, root.init_sample) if root.init_sample is not None else None # we need it only after the first frame anyway
# setting up some arguments for the looper
loop_args.imageStrength = loopSchedulesAndData.image_strength_schedule_series[frame_idx]
loop_args.blendFactorMax = loopSchedulesAndData.blendFactorMax_series[frame_idx]
loop_args.blendFactorSlope = loopSchedulesAndData.blendFactorSlope_series[frame_idx]
loop_args.tweeningFrameSchedule = loopSchedulesAndData.tweening_frames_schedule_series[frame_idx]
loop_args.colorCorrectionFactor = loopSchedulesAndData.color_correction_factor_series[frame_idx]
loop_args.use_looper = loopSchedulesAndData.use_looper
loop_args.imagesToKeyframe = loopSchedulesAndData.imagesToKeyframe
if 'img2img_fix_steps' in opts.data and opts.data["img2img_fix_steps"]: # disable "with img2img do exactly x steps" from general setting, as it *ruins* deforum animations
opts.data["img2img_fix_steps"] = False
if scheduled_clipskip is not None:
opts.data["CLIP_stop_at_last_layers"] = scheduled_clipskip
if scheduled_noise_multiplier is not None:
opts.data["initial_noise_multiplier"] = scheduled_noise_multiplier
if scheduled_ddim_eta is not None:
opts.data["eta_ddim"] = scheduled_ddim_eta
if scheduled_ancestral_eta is not None:
opts.data["eta_ancestral"] = scheduled_ancestral_eta
if anim_args.animation_mode == '3D' and (cmd_opts.lowvram or cmd_opts.medvram):
if predict_depths: depth_model.to('cpu')
devices.torch_gc()
lowvram.setup_for_low_vram(sd_model, cmd_opts.medvram)
sd_hijack.model_hijack.hijack(sd_model)
optical_flow_redo_generation = anim_args.optical_flow_redo_generation if not args.motion_preview_mode else 'None'
# optical flow redo before generation
if optical_flow_redo_generation != 'None' and prev_img is not None and strength > 0:
print(f"Optical flow redo is diffusing and warping using {optical_flow_redo_generation} optical flow before generation.")
stored_seed = args.seed
args.seed = random.randint(0, 2 ** 32 - 1)
disposable_image = generate(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame_idx, sampler_name=scheduled_sampler_name)
disposable_image = cv2.cvtColor(np.array(disposable_image), cv2.COLOR_RGB2BGR)
disposable_flow = get_flow_from_images(prev_img, disposable_image, optical_flow_redo_generation, raft_model)
disposable_image = cv2.cvtColor(disposable_image, cv2.COLOR_BGR2RGB)
disposable_image = image_transform_optical_flow(disposable_image, disposable_flow, redo_flow_factor)
args.seed = stored_seed
root.init_sample = Image.fromarray(disposable_image)
del (disposable_image, disposable_flow, stored_seed)
gc.collect()
# diffusion redo
if int(anim_args.diffusion_redo) > 0 and prev_img is not None and strength > 0 and not args.motion_preview_mode:
stored_seed = args.seed
for n in range(0, int(anim_args.diffusion_redo)):
print(f"Redo generation {n + 1} of {int(anim_args.diffusion_redo)} before final generation")
args.seed = random.randint(0, 2 ** 32 - 1)
disposable_image = generate(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame_idx, sampler_name=scheduled_sampler_name)
disposable_image = cv2.cvtColor(np.array(disposable_image), cv2.COLOR_RGB2BGR)
# color match on last one only
if n == int(anim_args.diffusion_redo):
disposable_image = maintain_colors(prev_img, color_match_sample, anim_args.color_coherence)
args.seed = stored_seed
root.init_sample = Image.fromarray(cv2.cvtColor(disposable_image, cv2.COLOR_BGR2RGB))
del (disposable_image, stored_seed)
gc.collect()
# generation
image = generate(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame_idx, sampler_name=scheduled_sampler_name)
if image is None:
break
# do hybrid video after generation
if frame_idx > 0 and anim_args.hybrid_composite == 'After Generation':
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
args, image = hybrid_composite(args, anim_args, frame_idx, image, depth_model, hybrid_comp_schedules, root)
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# color matching on first frame is after generation, color match was collected earlier, so we do an extra generation to avoid the corruption introduced by the color match of first output
if frame_idx == 0 and (anim_args.color_coherence == 'Image' or (anim_args.color_coherence == 'Video Input' and hybrid_available)):
image = maintain_colors(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR), color_match_sample, anim_args.color_coherence)
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
elif color_match_sample is not None and anim_args.color_coherence != 'None' and not anim_args.legacy_colormatch:
image = maintain_colors(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR), color_match_sample, anim_args.color_coherence)
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
# intercept and override to grayscale
if anim_args.color_force_grayscale:
image = ImageOps.grayscale(image)
image = ImageOps.colorize(image, black="black", white="white")
# overlay mask
if args.overlay_mask and (anim_args.use_mask_video or args.use_mask):
image = do_overlay_mask(args, anim_args, image, frame_idx)
# on strength 0, set color match to generation
if ((not anim_args.legacy_colormatch and not args.use_init) or (anim_args.legacy_colormatch and strength == 0)) and not anim_args.color_coherence in ['Image', 'Video Input']:
color_match_sample = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
opencv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
if not using_vid_init:
prev_img = opencv_image
if turbo_steps > 1:
turbo_prev_image, turbo_prev_frame_idx = turbo_next_image, turbo_next_frame_idx
turbo_next_image, turbo_next_frame_idx = opencv_image, frame_idx
frame_idx += turbo_steps
else:
filename = f"{root.timestring}_{frame_idx:09}.png"
save_image(image, 'PIL', filename, args, video_args, root)
if anim_args.save_depth_maps:
if cmd_opts.lowvram or cmd_opts.medvram:
lowvram.send_everything_to_cpu()
sd_hijack.model_hijack.undo_hijack(sd_model)
devices.torch_gc()
depth_model.to(root.device)
depth = depth_model.predict(opencv_image, anim_args.midas_weight, root.half_precision)
depth_model.save(os.path.join(args.outdir, f"{root.timestring}_depth_{frame_idx:09}.png"), depth)
if cmd_opts.lowvram or cmd_opts.medvram:
depth_model.to('cpu')
devices.torch_gc()
lowvram.setup_for_low_vram(sd_model, cmd_opts.medvram)
sd_hijack.model_hijack.hijack(sd_model)
frame_idx += 1
state.assign_current_image(image)
args.seed = next_seed(args, root)
last_preview_frame = render_preview(args, anim_args, video_args, root, frame_idx, last_preview_frame)
JobStatusTracker().update_phase(root.job_id, phase="GENERATING", progress=frame_idx/anim_args.max_frames)
if predict_depths and not keep_in_vram:
depth_model.delete_model() # handles adabins too
if load_raft:
raft_model.delete_model()