# Copyright (C) 2023 Deforum LLC # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, version 3 of the License. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see . # Contact the authors: https://deforum.github.io/ import os import pandas as pd import cv2 import numpy as np import numexpr import gc import random import PIL import time from PIL import Image, ImageOps from .generate import generate, isJson from .noise import add_noise from .animation import anim_frame_warp from .animation_key_frames import DeformAnimKeys, LooperAnimKeys from .video_audio_utilities import get_frame_name, get_next_frame, render_preview from .depth import DepthModel from .colors import maintain_colors from .parseq_adapter import ParseqAdapter from .seed import next_seed from .image_sharpening import unsharp_mask from .load_images import get_mask, load_img, load_image, get_mask_from_file from .hybrid_video import ( hybrid_generation, hybrid_composite, get_matrix_for_hybrid_motion, get_matrix_for_hybrid_motion_prev, get_flow_for_hybrid_motion, get_flow_for_hybrid_motion_prev, image_transform_ransac, image_transform_optical_flow, get_flow_from_images, abs_flow_to_rel_flow, rel_flow_to_abs_flow) from .save_images import save_image from .composable_masks import compose_mask_with_check from .settings import save_settings_from_animation_run from .deforum_controlnet import unpack_controlnet_vids, is_controlnet_enabled from .subtitle_handler import init_srt_file, write_frame_subtitle, format_animation_params from .resume import get_resume_vars from .masks import do_overlay_mask from .prompt import prepare_prompt from modules.shared import opts, cmd_opts, state, sd_model from modules import lowvram, devices, sd_hijack from .RAFT import RAFT from deforum_api import JobStatusTracker def render_animation(args, anim_args, video_args, parseq_args, loop_args, controlnet_args, root): if opts.data.get("deforum_save_gen_info_as_srt", False): # create .srt file and set timeframe mechanism using FPS srt_filename = os.path.join(args.outdir, f"{root.timestring}.srt") srt_frame_duration = init_srt_file(srt_filename, video_args.fps) if anim_args.animation_mode in ['2D', '3D']: # handle hybrid video generation if anim_args.hybrid_composite != 'None' or anim_args.hybrid_motion in ['Affine', 'Perspective', 'Optical Flow']: args, anim_args, inputfiles = hybrid_generation(args, anim_args, root) # path required by hybrid functions, even if hybrid_comp_save_extra_frames is False hybrid_frame_path = os.path.join(args.outdir, 'hybridframes') # initialize prev_flow if anim_args.hybrid_motion == 'Optical Flow': prev_flow = None if loop_args.use_looper: print("Using Guided Images mode: seed_behavior will be set to 'schedule' and 'strength_0_no_init' to False") if args.strength == 0: raise RuntimeError("Strength needs to be greater than 0 in Init tab") args.strength_0_no_init = False args.seed_behavior = "schedule" if not isJson(loop_args.init_images): raise RuntimeError("The images set for use with keyframe-guidance are not in a proper JSON format") # handle controlnet video input frames generation if is_controlnet_enabled(controlnet_args): unpack_controlnet_vids(args, anim_args, controlnet_args) # initialise Parseq adapter parseq_adapter = ParseqAdapter(parseq_args, anim_args, video_args, controlnet_args, loop_args) # expand key frame strings to values keys = DeformAnimKeys(anim_args, args.seed) if not parseq_adapter.use_parseq else parseq_adapter.anim_keys loopSchedulesAndData = LooperAnimKeys(loop_args, anim_args, args.seed) if not parseq_adapter.use_parseq else parseq_adapter.looper_keys # create output folder for the batch os.makedirs(args.outdir, exist_ok=True) print(f"Saving animation frames to:\n{args.outdir}") # save settings.txt file for the current run save_settings_from_animation_run(args, anim_args, parseq_args, loop_args, controlnet_args, video_args, root) # resume from timestring if anim_args.resume_from_timestring: root.timestring = anim_args.resume_timestring # Always enable pseudo-3d with parseq. No need for an extra toggle: # Whether it's used or not in practice is defined by the schedules if parseq_adapter.use_parseq: anim_args.flip_2d_perspective = True # expand prompts out to per-frame if parseq_adapter.manages_prompts(): prompt_series = keys.prompts else: prompt_series = pd.Series([np.nan for a in range(anim_args.max_frames)]) for i, prompt in root.animation_prompts.items(): if str(i).isdigit(): prompt_series[int(i)] = prompt else: prompt_series[int(numexpr.evaluate(i))] = prompt prompt_series = prompt_series.ffill().bfill() # check for video inits using_vid_init = anim_args.animation_mode == 'Video Input' # load depth model for 3D predict_depths = (anim_args.animation_mode == '3D' and anim_args.use_depth_warping) or anim_args.save_depth_maps predict_depths = predict_depths or (anim_args.hybrid_composite and anim_args.hybrid_comp_mask_type in ['Depth', 'Video Depth']) predict_depths = predict_depths and not args.motion_preview_mode if predict_depths: keep_in_vram = opts.data.get("deforum_keep_3d_models_in_vram") device = ('cpu' if cmd_opts.lowvram or cmd_opts.medvram else root.device) depth_model = DepthModel(root.models_path, device, root.half_precision, keep_in_vram=keep_in_vram, depth_algorithm=anim_args.depth_algorithm, Width=args.W, Height=args.H, midas_weight=anim_args.midas_weight) # depth-based hybrid composite mask requires saved depth maps if anim_args.hybrid_composite != 'None' and anim_args.hybrid_comp_mask_type == 'Depth': anim_args.save_depth_maps = True else: depth_model = None anim_args.save_depth_maps = False raft_model = None load_raft = (anim_args.optical_flow_cadence == "RAFT" and int(anim_args.diffusion_cadence) > 1) or \ (anim_args.hybrid_motion == "Optical Flow" and anim_args.hybrid_flow_method == "RAFT") or \ (anim_args.optical_flow_redo_generation == "RAFT") load_raft = load_raft and not args.motion_preview_mode if load_raft: print("Loading RAFT model...") raft_model = RAFT() # state for interpolating between diffusion steps turbo_steps = 1 if using_vid_init else int(anim_args.diffusion_cadence) turbo_prev_image, turbo_prev_frame_idx = None, 0 turbo_next_image, turbo_next_frame_idx = None, 0 # initialize vars prev_img = None color_match_sample = None start_frame = 0 # resume animation (requires at least two frames - see function) if anim_args.resume_from_timestring: # determine last frame and frame to start on prev_frame, next_frame, prev_img, next_img = get_resume_vars( folder=args.outdir, timestring=anim_args.resume_timestring, cadence=turbo_steps ) # set up turbo step vars if turbo_steps > 1: turbo_prev_image, turbo_prev_frame_idx = prev_img, prev_frame turbo_next_image, turbo_next_frame_idx = next_img, next_frame # advance start_frame to next frame start_frame = next_frame + 1 frame_idx = start_frame # reset the mask vals as they are overwritten in the compose_mask algorithm mask_vals = {} noise_mask_vals = {} mask_vals['everywhere'] = Image.new('1', (args.W, args.H), 1) noise_mask_vals['everywhere'] = Image.new('1', (args.W, args.H), 1) mask_image = None if args.use_init and ((args.init_image != None and args.init_image != '') or args.init_image_box != None): _, mask_image = load_img(args.init_image, args.init_image_box, shape=(args.W, args.H), use_alpha_as_mask=args.use_alpha_as_mask) mask_vals['video_mask'] = mask_image noise_mask_vals['video_mask'] = mask_image # Grab the first frame masks since they wont be provided until next frame # Video mask overrides the init image mask, also, won't be searching for init_mask if use_mask_video is set # Made to solve https://github.com/deforum-art/deforum-for-automatic1111-webui/issues/386 if anim_args.use_mask_video: args.mask_file = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args) root.noise_mask = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args) mask_vals['video_mask'] = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args) noise_mask_vals['video_mask'] = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args) elif mask_image is None and args.use_mask: mask_vals['video_mask'] = get_mask(args) noise_mask_vals['video_mask'] = get_mask(args) # TODO?: add a different default noisc mask # get color match for 'Image' color coherence only once, before loop if anim_args.color_coherence == 'Image': color_match_sample = load_image(anim_args.color_coherence_image_path, None) color_match_sample = color_match_sample.resize((args.W, args.H), PIL.Image.LANCZOS) color_match_sample = cv2.cvtColor(np.array(color_match_sample), cv2.COLOR_RGB2BGR) # Webui state.job_count = anim_args.max_frames last_preview_frame = 0 while frame_idx < anim_args.max_frames: # Webui state.job = f"frame {frame_idx + 1}/{anim_args.max_frames}" state.job_no = frame_idx + 1 if state.skipped: print("\n** PAUSED **") state.skipped = False while not state.skipped: time.sleep(0.1) print("** RESUMING **") print(f"\033[36mAnimation frame: \033[0m{frame_idx}/{anim_args.max_frames} ") noise = keys.noise_schedule_series[frame_idx] strength = keys.strength_schedule_series[frame_idx] scale = keys.cfg_scale_schedule_series[frame_idx] contrast = keys.contrast_schedule_series[frame_idx] kernel = int(keys.kernel_schedule_series[frame_idx]) sigma = keys.sigma_schedule_series[frame_idx] amount = keys.amount_schedule_series[frame_idx] threshold = keys.threshold_schedule_series[frame_idx] cadence_flow_factor = keys.cadence_flow_factor_schedule_series[frame_idx] redo_flow_factor = keys.redo_flow_factor_schedule_series[frame_idx] hybrid_comp_schedules = { "alpha": keys.hybrid_comp_alpha_schedule_series[frame_idx], "mask_blend_alpha": keys.hybrid_comp_mask_blend_alpha_schedule_series[frame_idx], "mask_contrast": keys.hybrid_comp_mask_contrast_schedule_series[frame_idx], "mask_auto_contrast_cutoff_low": int(keys.hybrid_comp_mask_auto_contrast_cutoff_low_schedule_series[frame_idx]), "mask_auto_contrast_cutoff_high": int(keys.hybrid_comp_mask_auto_contrast_cutoff_high_schedule_series[frame_idx]), "flow_factor": keys.hybrid_flow_factor_schedule_series[frame_idx] } scheduled_sampler_name = None scheduled_clipskip = None scheduled_noise_multiplier = None scheduled_ddim_eta = None scheduled_ancestral_eta = None mask_seq = None noise_mask_seq = None if anim_args.enable_steps_scheduling and keys.steps_schedule_series[frame_idx] is not None: args.steps = int(keys.steps_schedule_series[frame_idx]) if anim_args.enable_sampler_scheduling and keys.sampler_schedule_series[frame_idx] is not None: scheduled_sampler_name = keys.sampler_schedule_series[frame_idx].casefold() if anim_args.enable_clipskip_scheduling and keys.clipskip_schedule_series[frame_idx] is not None: scheduled_clipskip = int(keys.clipskip_schedule_series[frame_idx]) if anim_args.enable_noise_multiplier_scheduling and keys.noise_multiplier_schedule_series[frame_idx] is not None: scheduled_noise_multiplier = float(keys.noise_multiplier_schedule_series[frame_idx]) if anim_args.enable_ddim_eta_scheduling and keys.ddim_eta_schedule_series[frame_idx] is not None: scheduled_ddim_eta = float(keys.ddim_eta_schedule_series[frame_idx]) if anim_args.enable_ancestral_eta_scheduling and keys.ancestral_eta_schedule_series[frame_idx] is not None: scheduled_ancestral_eta = float(keys.ancestral_eta_schedule_series[frame_idx]) if args.use_mask and keys.mask_schedule_series[frame_idx] is not None: mask_seq = keys.mask_schedule_series[frame_idx] if anim_args.use_noise_mask and keys.noise_mask_schedule_series[frame_idx] is not None: noise_mask_seq = keys.noise_mask_schedule_series[frame_idx] if args.use_mask and not anim_args.use_noise_mask: noise_mask_seq = mask_seq depth = None if anim_args.animation_mode == '3D' and (cmd_opts.lowvram or cmd_opts.medvram): # Unload the main checkpoint and load the depth model lowvram.send_everything_to_cpu() sd_hijack.model_hijack.undo_hijack(sd_model) devices.torch_gc() if predict_depths: depth_model.to(root.device) if turbo_steps == 1 and opts.data.get("deforum_save_gen_info_as_srt"): params_to_print = opts.data.get("deforum_save_gen_info_as_srt_params", ['Seed']) params_string = format_animation_params(keys, prompt_series, frame_idx, params_to_print) write_frame_subtitle(srt_filename, frame_idx, srt_frame_duration, f"F#: {frame_idx}; Cadence: false; Seed: {args.seed}; {params_string}") params_string = None # emit in-between frames if turbo_steps > 1: tween_frame_start_idx = max(start_frame, frame_idx - turbo_steps) cadence_flow = None for tween_frame_idx in range(tween_frame_start_idx, frame_idx): # update progress during cadence state.job = f"frame {tween_frame_idx + 1}/{anim_args.max_frames}" state.job_no = tween_frame_idx + 1 # cadence vars tween = float(tween_frame_idx - tween_frame_start_idx + 1) / float(frame_idx - tween_frame_start_idx) advance_prev = turbo_prev_image is not None and tween_frame_idx > turbo_prev_frame_idx advance_next = tween_frame_idx > turbo_next_frame_idx # optical flow cadence setup before animation warping if anim_args.animation_mode in ['2D', '3D'] and anim_args.optical_flow_cadence != 'None': if keys.strength_schedule_series[tween_frame_start_idx] > 0: if cadence_flow is None and turbo_prev_image is not None and turbo_next_image is not None: cadence_flow = get_flow_from_images(turbo_prev_image, turbo_next_image, anim_args.optical_flow_cadence, raft_model) / 2 turbo_next_image = image_transform_optical_flow(turbo_next_image, -cadence_flow, 1) if opts.data.get("deforum_save_gen_info_as_srt"): params_to_print = opts.data.get("deforum_save_gen_info_as_srt_params", ['Seed']) params_string = format_animation_params(keys, prompt_series, tween_frame_idx, params_to_print) write_frame_subtitle(srt_filename, tween_frame_idx, srt_frame_duration, f"F#: {tween_frame_idx}; Cadence: {tween < 1.0}; Seed: {args.seed}; {params_string}") params_string = None print(f"Creating in-between {'' if cadence_flow is None else anim_args.optical_flow_cadence + ' optical flow '}cadence frame: {tween_frame_idx}; tween:{tween:0.2f};") if depth_model is not None: assert (turbo_next_image is not None) depth = depth_model.predict(turbo_next_image, anim_args.midas_weight, root.half_precision) if advance_prev: turbo_prev_image, _ = anim_frame_warp(turbo_prev_image, args, anim_args, keys, tween_frame_idx, depth_model, depth=depth, device=root.device, half_precision=root.half_precision) if advance_next: turbo_next_image, _ = anim_frame_warp(turbo_next_image, args, anim_args, keys, tween_frame_idx, depth_model, depth=depth, device=root.device, half_precision=root.half_precision) # hybrid video motion - warps turbo_prev_image or turbo_next_image to match motion if tween_frame_idx > 0: if anim_args.hybrid_motion in ['Affine', 'Perspective']: if anim_args.hybrid_motion_use_prev_img: matrix = get_matrix_for_hybrid_motion_prev(tween_frame_idx - 1, (args.W, args.H), inputfiles, prev_img, anim_args.hybrid_motion) if advance_prev: turbo_prev_image = image_transform_ransac(turbo_prev_image, matrix, anim_args.hybrid_motion) if advance_next: turbo_next_image = image_transform_ransac(turbo_next_image, matrix, anim_args.hybrid_motion) else: matrix = get_matrix_for_hybrid_motion(tween_frame_idx - 1, (args.W, args.H), inputfiles, anim_args.hybrid_motion) if advance_prev: turbo_prev_image = image_transform_ransac(turbo_prev_image, matrix, anim_args.hybrid_motion) if advance_next: turbo_next_image = image_transform_ransac(turbo_next_image, matrix, anim_args.hybrid_motion) if anim_args.hybrid_motion in ['Optical Flow']: if anim_args.hybrid_motion_use_prev_img: flow = get_flow_for_hybrid_motion_prev(tween_frame_idx - 1, (args.W, args.H), inputfiles, hybrid_frame_path, prev_flow, prev_img, anim_args.hybrid_flow_method, raft_model, anim_args.hybrid_flow_consistency, anim_args.hybrid_consistency_blur, anim_args.hybrid_comp_save_extra_frames) if advance_prev: turbo_prev_image = image_transform_optical_flow(turbo_prev_image, flow, hybrid_comp_schedules['flow_factor']) if advance_next: turbo_next_image = image_transform_optical_flow(turbo_next_image, flow, hybrid_comp_schedules['flow_factor']) prev_flow = flow else: flow = get_flow_for_hybrid_motion(tween_frame_idx - 1, (args.W, args.H), inputfiles, hybrid_frame_path, prev_flow, anim_args.hybrid_flow_method, raft_model, anim_args.hybrid_flow_consistency, anim_args.hybrid_consistency_blur, anim_args.hybrid_comp_save_extra_frames) if advance_prev: turbo_prev_image = image_transform_optical_flow(turbo_prev_image, flow, hybrid_comp_schedules['flow_factor']) if advance_next: turbo_next_image = image_transform_optical_flow(turbo_next_image, flow, hybrid_comp_schedules['flow_factor']) prev_flow = flow # do optical flow cadence after animation warping if cadence_flow is not None: cadence_flow = abs_flow_to_rel_flow(cadence_flow, args.W, args.H) cadence_flow, _ = anim_frame_warp(cadence_flow, args, anim_args, keys, tween_frame_idx, depth_model, depth=depth, device=root.device, half_precision=root.half_precision) cadence_flow_inc = rel_flow_to_abs_flow(cadence_flow, args.W, args.H) * tween if advance_prev: turbo_prev_image = image_transform_optical_flow(turbo_prev_image, cadence_flow_inc, cadence_flow_factor) if advance_next: turbo_next_image = image_transform_optical_flow(turbo_next_image, cadence_flow_inc, cadence_flow_factor) turbo_prev_frame_idx = turbo_next_frame_idx = tween_frame_idx if turbo_prev_image is not None and tween < 1.0: img = turbo_prev_image * (1.0 - tween) + turbo_next_image * tween else: img = turbo_next_image # intercept and override to grayscale if anim_args.color_force_grayscale: img = cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2GRAY) img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) # overlay mask if args.overlay_mask and (anim_args.use_mask_video or args.use_mask): img = do_overlay_mask(args, anim_args, img, tween_frame_idx, True) # get prev_img during cadence prev_img = img # current image update for cadence frames (left commented because it doesn't currently update the preview) # state.current_image = Image.fromarray(cv2.cvtColor(img.astype(np.uint8), cv2.COLOR_BGR2RGB)) # saving cadence frames filename = f"{root.timestring}_{tween_frame_idx:09}.png" cv2.imwrite(os.path.join(args.outdir, filename), img) if anim_args.save_depth_maps: depth_model.save(os.path.join(args.outdir, f"{root.timestring}_depth_{tween_frame_idx:09}.png"), depth) # get color match for video outside of prev_img conditional hybrid_available = anim_args.hybrid_composite != 'None' or anim_args.hybrid_motion in ['Optical Flow', 'Affine', 'Perspective'] if anim_args.color_coherence == 'Video Input' and hybrid_available: if int(frame_idx) % int(anim_args.color_coherence_video_every_N_frames) == 0: prev_vid_img = Image.open(os.path.join(args.outdir, 'inputframes', get_frame_name(anim_args.video_init_path) + f"{frame_idx:09}.jpg")) prev_vid_img = prev_vid_img.resize((args.W, args.H), PIL.Image.LANCZOS) color_match_sample = np.asarray(prev_vid_img) color_match_sample = cv2.cvtColor(color_match_sample, cv2.COLOR_RGB2BGR) # after 1st frame, prev_img exists if prev_img is not None: # apply transforms to previous frame prev_img, depth = anim_frame_warp(prev_img, args, anim_args, keys, frame_idx, depth_model, depth=None, device=root.device, half_precision=root.half_precision) # do hybrid compositing before motion if anim_args.hybrid_composite == 'Before Motion': args, prev_img = hybrid_composite(args, anim_args, frame_idx, prev_img, depth_model, hybrid_comp_schedules, root) # hybrid video motion - warps prev_img to match motion, usually to prepare for compositing if anim_args.hybrid_motion in ['Affine', 'Perspective']: if anim_args.hybrid_motion_use_prev_img: matrix = get_matrix_for_hybrid_motion_prev(frame_idx - 1, (args.W, args.H), inputfiles, prev_img, anim_args.hybrid_motion) else: matrix = get_matrix_for_hybrid_motion(frame_idx - 1, (args.W, args.H), inputfiles, anim_args.hybrid_motion) prev_img = image_transform_ransac(prev_img, matrix, anim_args.hybrid_motion) if anim_args.hybrid_motion in ['Optical Flow']: if anim_args.hybrid_motion_use_prev_img: flow = get_flow_for_hybrid_motion_prev(frame_idx - 1, (args.W, args.H), inputfiles, hybrid_frame_path, prev_flow, prev_img, anim_args.hybrid_flow_method, raft_model, anim_args.hybrid_flow_consistency, anim_args.hybrid_consistency_blur, anim_args.hybrid_comp_save_extra_frames) else: flow = get_flow_for_hybrid_motion(frame_idx - 1, (args.W, args.H), inputfiles, hybrid_frame_path, prev_flow, anim_args.hybrid_flow_method, raft_model, anim_args.hybrid_flow_consistency, anim_args.hybrid_consistency_blur, anim_args.hybrid_comp_save_extra_frames) prev_img = image_transform_optical_flow(prev_img, flow, hybrid_comp_schedules['flow_factor']) prev_flow = flow # do hybrid compositing after motion (normal) if anim_args.hybrid_composite == 'Normal': args, prev_img = hybrid_composite(args, anim_args, frame_idx, prev_img, depth_model, hybrid_comp_schedules, root) # apply color matching if anim_args.color_coherence != 'None': if color_match_sample is None: color_match_sample = prev_img.copy() else: prev_img = maintain_colors(prev_img, color_match_sample, anim_args.color_coherence) # intercept and override to grayscale if anim_args.color_force_grayscale: prev_img = cv2.cvtColor(prev_img, cv2.COLOR_BGR2GRAY) prev_img = cv2.cvtColor(prev_img, cv2.COLOR_GRAY2BGR) # apply scaling contrast_image = (prev_img * contrast).round().astype(np.uint8) # anti-blur if amount > 0: contrast_image = unsharp_mask(contrast_image, (kernel, kernel), sigma, amount, threshold, mask_image if args.use_mask else None) # apply frame noising if args.use_mask or anim_args.use_noise_mask: root.noise_mask = compose_mask_with_check(root, args, noise_mask_seq, noise_mask_vals, Image.fromarray(cv2.cvtColor(contrast_image, cv2.COLOR_BGR2RGB))) noised_image = add_noise(contrast_image, noise, args.seed, anim_args.noise_type, (anim_args.perlin_w, anim_args.perlin_h, anim_args.perlin_octaves, anim_args.perlin_persistence), root.noise_mask, args.invert_mask) # use transformed previous frame as init for current args.use_init = True root.init_sample = Image.fromarray(cv2.cvtColor(noised_image, cv2.COLOR_BGR2RGB)) args.strength = max(0.0, min(1.0, strength)) args.scale = scale # Pix2Pix Image CFG Scale - does *nothing* with non pix2pix checkpoints args.pix2pix_img_cfg_scale = float(keys.pix2pix_img_cfg_scale_series[frame_idx]) # grab prompt for current frame args.prompt = prompt_series[frame_idx] if args.seed_behavior == 'schedule' or parseq_adapter.manages_seed(): args.seed = int(keys.seed_schedule_series[frame_idx]) if anim_args.enable_checkpoint_scheduling: args.checkpoint = keys.checkpoint_schedule_series[frame_idx] else: args.checkpoint = None # SubSeed scheduling if anim_args.enable_subseed_scheduling: root.subseed = int(keys.subseed_schedule_series[frame_idx]) root.subseed_strength = float(keys.subseed_strength_schedule_series[frame_idx]) if parseq_adapter.manages_seed(): anim_args.enable_subseed_scheduling = True root.subseed = int(keys.subseed_schedule_series[frame_idx]) root.subseed_strength = keys.subseed_strength_schedule_series[frame_idx] # set value back into the prompt - prepare and report prompt and seed args.prompt = prepare_prompt(args.prompt, anim_args.max_frames, args.seed, frame_idx) # grab init image for current frame if using_vid_init: init_frame = get_next_frame(args.outdir, anim_args.video_init_path, frame_idx, False) print(f"Using video init frame {init_frame}") args.init_image = init_frame args.init_image_box = None # init_image_box not used in this case args.strength = max(0.0, min(1.0, strength)) if anim_args.use_mask_video: args.mask_file = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args) root.noise_mask = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args) mask_vals['video_mask'] = get_mask_from_file(get_next_frame(args.outdir, anim_args.video_mask_path, frame_idx, True), args) if args.use_mask: args.mask_image = compose_mask_with_check(root, args, mask_seq, mask_vals, root.init_sample) if root.init_sample is not None else None # we need it only after the first frame anyway # setting up some arguments for the looper loop_args.imageStrength = loopSchedulesAndData.image_strength_schedule_series[frame_idx] loop_args.blendFactorMax = loopSchedulesAndData.blendFactorMax_series[frame_idx] loop_args.blendFactorSlope = loopSchedulesAndData.blendFactorSlope_series[frame_idx] loop_args.tweeningFrameSchedule = loopSchedulesAndData.tweening_frames_schedule_series[frame_idx] loop_args.colorCorrectionFactor = loopSchedulesAndData.color_correction_factor_series[frame_idx] loop_args.use_looper = loopSchedulesAndData.use_looper loop_args.imagesToKeyframe = loopSchedulesAndData.imagesToKeyframe if 'img2img_fix_steps' in opts.data and opts.data["img2img_fix_steps"]: # disable "with img2img do exactly x steps" from general setting, as it *ruins* deforum animations opts.data["img2img_fix_steps"] = False if scheduled_clipskip is not None: opts.data["CLIP_stop_at_last_layers"] = scheduled_clipskip if scheduled_noise_multiplier is not None: opts.data["initial_noise_multiplier"] = scheduled_noise_multiplier if scheduled_ddim_eta is not None: opts.data["eta_ddim"] = scheduled_ddim_eta if scheduled_ancestral_eta is not None: opts.data["eta_ancestral"] = scheduled_ancestral_eta if anim_args.animation_mode == '3D' and (cmd_opts.lowvram or cmd_opts.medvram): if predict_depths: depth_model.to('cpu') devices.torch_gc() lowvram.setup_for_low_vram(sd_model, cmd_opts.medvram) sd_hijack.model_hijack.hijack(sd_model) optical_flow_redo_generation = anim_args.optical_flow_redo_generation if not args.motion_preview_mode else 'None' # optical flow redo before generation if optical_flow_redo_generation != 'None' and prev_img is not None and strength > 0: print(f"Optical flow redo is diffusing and warping using {optical_flow_redo_generation} optical flow before generation.") stored_seed = args.seed args.seed = random.randint(0, 2 ** 32 - 1) disposable_image = generate(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame_idx, sampler_name=scheduled_sampler_name) disposable_image = cv2.cvtColor(np.array(disposable_image), cv2.COLOR_RGB2BGR) disposable_flow = get_flow_from_images(prev_img, disposable_image, optical_flow_redo_generation, raft_model) disposable_image = cv2.cvtColor(disposable_image, cv2.COLOR_BGR2RGB) disposable_image = image_transform_optical_flow(disposable_image, disposable_flow, redo_flow_factor) args.seed = stored_seed root.init_sample = Image.fromarray(disposable_image) del (disposable_image, disposable_flow, stored_seed) gc.collect() # diffusion redo if int(anim_args.diffusion_redo) > 0 and prev_img is not None and strength > 0 and not args.motion_preview_mode: stored_seed = args.seed for n in range(0, int(anim_args.diffusion_redo)): print(f"Redo generation {n + 1} of {int(anim_args.diffusion_redo)} before final generation") args.seed = random.randint(0, 2 ** 32 - 1) disposable_image = generate(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame_idx, sampler_name=scheduled_sampler_name) disposable_image = cv2.cvtColor(np.array(disposable_image), cv2.COLOR_RGB2BGR) # color match on last one only if n == int(anim_args.diffusion_redo): disposable_image = maintain_colors(prev_img, color_match_sample, anim_args.color_coherence) args.seed = stored_seed root.init_sample = Image.fromarray(cv2.cvtColor(disposable_image, cv2.COLOR_BGR2RGB)) del (disposable_image, stored_seed) gc.collect() # generation image = generate(args, keys, anim_args, loop_args, controlnet_args, root, parseq_adapter, frame_idx, sampler_name=scheduled_sampler_name) if image is None: break # do hybrid video after generation if frame_idx > 0 and anim_args.hybrid_composite == 'After Generation': image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) args, image = hybrid_composite(args, anim_args, frame_idx, image, depth_model, hybrid_comp_schedules, root) image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) # color matching on first frame is after generation, color match was collected earlier, so we do an extra generation to avoid the corruption introduced by the color match of first output if frame_idx == 0 and (anim_args.color_coherence == 'Image' or (anim_args.color_coherence == 'Video Input' and hybrid_available)): image = maintain_colors(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR), color_match_sample, anim_args.color_coherence) image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) elif color_match_sample is not None and anim_args.color_coherence != 'None' and not anim_args.legacy_colormatch: image = maintain_colors(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR), color_match_sample, anim_args.color_coherence) image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) # intercept and override to grayscale if anim_args.color_force_grayscale: image = ImageOps.grayscale(image) image = ImageOps.colorize(image, black="black", white="white") # overlay mask if args.overlay_mask and (anim_args.use_mask_video or args.use_mask): image = do_overlay_mask(args, anim_args, image, frame_idx) # on strength 0, set color match to generation if ((not anim_args.legacy_colormatch and not args.use_init) or (anim_args.legacy_colormatch and strength == 0)) and not anim_args.color_coherence in ['Image', 'Video Input']: color_match_sample = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR) opencv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) if not using_vid_init: prev_img = opencv_image if turbo_steps > 1: turbo_prev_image, turbo_prev_frame_idx = turbo_next_image, turbo_next_frame_idx turbo_next_image, turbo_next_frame_idx = opencv_image, frame_idx frame_idx += turbo_steps else: filename = f"{root.timestring}_{frame_idx:09}.png" save_image(image, 'PIL', filename, args, video_args, root) if anim_args.save_depth_maps: if cmd_opts.lowvram or cmd_opts.medvram: lowvram.send_everything_to_cpu() sd_hijack.model_hijack.undo_hijack(sd_model) devices.torch_gc() depth_model.to(root.device) depth = depth_model.predict(opencv_image, anim_args.midas_weight, root.half_precision) depth_model.save(os.path.join(args.outdir, f"{root.timestring}_depth_{frame_idx:09}.png"), depth) if cmd_opts.lowvram or cmd_opts.medvram: depth_model.to('cpu') devices.torch_gc() lowvram.setup_for_low_vram(sd_model, cmd_opts.medvram) sd_hijack.model_hijack.hijack(sd_model) frame_idx += 1 state.assign_current_image(image) args.seed = next_seed(args, root) last_preview_frame = render_preview(args, anim_args, video_args, root, frame_idx, last_preview_frame) JobStatusTracker().update_phase(root.job_id, phase="GENERATING", progress=frame_idx/anim_args.max_frames) if predict_depths and not keep_in_vram: depth_model.delete_model() # handles adabins too if load_raft: raft_model.delete_model()