dddsaty commited on
Commit
0ac84e0
1 Parent(s): 99429e0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -117
README.md CHANGED
@@ -10,130 +10,25 @@ tags:
10
  - llama
11
  - Open Ko SOLAR
12
  ---
13
- ### Model Name
14
  - Open_Ko_SOLAR_DPO_Merge_v0.1
15
 
16
- ### Base Model
17
  - beomi/OPEN-SOLAR-KO-10.7B
18
 
19
- ### Dataset
20
  - maywell/ko_Ultrafeedback_binarized
21
 
22
- ### Method
23
- - DPO
24
- - Adapter Merge
25
-
26
- --- Below is original Author's explanation
27
- ---
28
- language:
29
- - ko
30
- - en
31
- pipeline_tag: text-generation
32
- inference: false
33
- tags:
34
- - solar
35
- - mistral
36
- - pytorch
37
- - solar-ko
38
- library_name: transformers
39
- license: apache-2.0
40
- ---
41
-
42
  **Update Log**
43
 
44
- - 2024.01.08: Initial Test version Release of Solar-Ko
45
 
46
- # **Open-Solar-Ko** ⭐🇰🇷
 
47
 
48
- Solar-Ko represents an advanced iteration of the upstage/SOLAR-10.7B-v1.0 model, featuring an expanded vocabulary and the inclusion of a Korean corpus for enhanced pretraining.
49
-
50
- Open-Solar-Ko exclusively utilizes publicly accessible Korean corpora, including sources such as [AI Hub](https://www.aihub.or.kr), [Modu Corpus, 모두의 말뭉치](https://corpus.korean.go.kr/), and [Korean Wikipedia](https://dumps.wikimedia.org/kowiki/).
51
-
52
- As training was conducted solely with publicly available corpora, this model is open for unrestricted use by everyone, adhering to the Apache2.0 open source License.
53
-
54
- ## Model Details
55
-
56
- **Model Developers:** Junbum Lee (Beomi)
57
-
58
- **Variations:** Solar-Ko is available with one parameter sizes — 10B with Continual Pretrained version.
59
-
60
- **Input:** The model accepts only text input.
61
-
62
- **Output:** The model produces text output exclusively.
63
-
64
- **Model Architecture:**
65
-
66
- SOLAR-KO-10.7B is an auto-regressive language model that leverages an optimized transformer architecture derived from Llama-2.
67
-
68
- | |Training Data|Parameters|Content Length|GQA|Tokens|Learning Rate|
69
- |---|---|---|---|---|---|---|
70
- |SOLAR-KO-10.7B|*A curated mix of Publicly Accessible Korean Corpora*|10.7B|2k|✘|>15B*|5e<sup>-5</sup>|
71
-
72
- **Training Corpus**
73
-
74
- The model was trained using selected datasets from AIHub and Modu Corpus. Detailed information about the training datasets is available below:
75
-
76
- - AI Hub: [corpus/AI_HUB](./corpus/AI_HUB)
77
- - Only the `Training` segment of the data was used.
78
- - The `Validation` and `Test` segments were deliberately excluded.
79
- - Modu Corpus: [corpus/MODU_CORPUS](./corpus/MODU_CORPUS)
80
-
81
- The final JSONL dataset used to train this model is approximately 61GB in size.
82
-
83
- Total token count: Approximately 15 billion tokens (*using the expanded tokenizer. With the original SOLAR tokenizer, >60 billion tokens.)
84
-
85
- **Vocab Expansion**
86
-
87
- | Model Name | Vocabulary Size | Description |
88
- | --- | --- | --- |
89
- | Original Solar | 32000 | Sentencepiece BPE |
90
- | **Expanded SOLAR-KO-10.7B** | 46592 | Sentencepiece BPE. Added Korean vocab and merges |
91
-
92
- **Tokenizing "안녕하세요, 오늘은 날씨가 좋네요."**
93
-
94
- - SOLAR-10.7B: 26 tokens
95
- - SOLAR-KO-10.7b: 8 tokens
96
-
97
- | Model | Tokens |
98
- | --- | --- |
99
- | SOLAR-10.7B | `['▁', '안', '<0xEB>', '<0x85>', '<0x95>', '하', '세', '요', ',', '▁', '오', '<0xEB>', '<0x8A>', '<0x98>', '은', '▁', '날', '<0xEC>', '<0x94>', '<0xA8>', '가', '▁', '좋', '네', '요', '.']` |
100
- | SOLAR-KO-10.7B | `['▁안녕', '하세요', ',', '▁오늘은', '▁날', '씨가', '▁좋네요', '.']` |
101
-
102
- **Tokenizing "Meet 10.7B Solar: Elevating Performance with Upstage Depth UP Scaling!"**
103
-
104
- - SOLAR-10.7B: 22 tokens
105
- - SOLAR-KO-10.7b: 22 tokens
106
-
107
- | Model | Tokens |
108
- | --- | --- |
109
- | SOLAR-10.7B | `['▁Meet', '▁', '1', '0', '.', '7', 'B', '▁Solar', ':', '▁E', 'lev', 'ating', '▁Performance', '▁with', '▁Up', 'stage', '▁Dep', 'th', '▁UP', '▁Scal', 'ing', '!']` |
110
- | SOLAR-KO-10.7B | `['▁Meet', '▁', '1', '0', '.', '7', 'B', '▁Solar', ':', '▁E', 'lev', 'ating', '▁Performance', '▁with', '▁Up', 'stage', '▁Dep', 'th', '▁UP', '▁Scal', 'ing', '!']` |
111
-
112
- # LICENSE
113
-
114
- Apache 2.0
115
-
116
- # **Model Benchmark**
117
-
118
- ## LM Eval Harness - Korean (polyglot branch)
119
-
120
- - Used EleutherAI's lm-evaluation-harness https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot
121
-
122
- | | 0 | 5 | 10 | 50 |
123
- |:---------------------------------|---------:|---------:|---------:|---------:|
124
- | kobest_boolq (macro_f1) | 0.853949 | 0.88098 | 0.898139 | 0.902354 |
125
- | kobest_copa (macro_f1) | 0.804531 | 0.826736 | 0.837656 | 0.860899 |
126
- | kobest_hellaswag (macro_f1) | 0.507174 | 0.500983 | 0.487287 | 0.512182 |
127
- | kobest_sentineg (macro_f1) | 0.3517 | 0.972291 | 0.977321 | 0.984884 |
128
- | kohatespeech (macro_f1) | 0.258111 | 0.403957 | 0.386808 | 0.462393 |
129
- | kohatespeech_apeach (macro_f1) | 0.337667 | 0.651697 | 0.705337 | 0.827757 |
130
- | kohatespeech_gen_bias (macro_f1) | 0.124535 | 0.503464 | 0.498501 | 0.443218 |
131
- | korunsmile (f1) | 0.3814 | 0.356939 | 0.369989 | 0.296193 |
132
- | nsmc (acc) | 0.5356 | 0.87162 | 0.88654 | 0.89632 |
133
- | pawsx_ko (acc) | 0.5435 | 0.5245 | 0.5315 | 0.5385 |
134
-
135
- ## Citation
136
 
 
137
  ```
138
  @misc {solar_ko_junbum_2023,
139
  author = { {L. Junbum} },
@@ -145,7 +40,4 @@ Apache 2.0
145
 
146
  ```
147
 
148
- ## Acknowledgements
149
-
150
- - Training support was provided by the [TPU Research Cloud](https://sites.research.google/trc/) program.
151
- - The training corpus includes data from [AI Hub](https://www.aihub.or.kr/), [Modu Corpus](https://corpus.korean.go.kr/), and [Korean Wikipedia](https://dumps.wikimedia.org/kowiki/).
 
10
  - llama
11
  - Open Ko SOLAR
12
  ---
13
+ **Model Name**
14
  - Open_Ko_SOLAR_DPO_Merge_v0.1
15
 
16
+ **Base Model**
17
  - beomi/OPEN-SOLAR-KO-10.7B
18
 
19
+ **Training Corpus**
20
  - maywell/ko_Ultrafeedback_binarized
21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  **Update Log**
23
 
24
+ - 2024.01.25: Initial version Upload
25
 
26
+ **LICENSE**
27
+ - Apache 2.0
28
 
29
+ **Citation**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ Original Source :
32
  ```
33
  @misc {solar_ko_junbum_2023,
34
  author = { {L. Junbum} },
 
40
 
41
  ```
42
 
43
+ **Acknowledgements**