metadata
license: mit
library_name: segmentation-models-pytorch
tags:
- semantic-segmentation
- pytorch
- segmentation-models-pytorch
languages:
- python
pipeline_tag: image-segmentation
FPN Model Card
Table of Contents:
Load trained model
import segmentation_models_pytorch as smp
model = smp.FPN.from_pretrained("oxford-pet-segmentation")
Model init parameters
model_init_params = {
"encoder_name": "resnet34",
"encoder_depth": 5,
"encoder_weights": "imagenet",
"decoder_pyramid_channels": 256,
"decoder_segmentation_channels": 128,
"decoder_merge_policy": "add",
"decoder_dropout": 0.2,
"in_channels": 3,
"classes": 1,
"activation": None,
"upsampling": 4,
"aux_params": None
}
Model metrics
[
{
"test_per_image_iou": 0.8471360802650452,
"test_dataset_iou": 0.8543952107429504
}
]
Dataset
Dataset name: Oxford Pet
More Information
- Library: https://github.com/qubvel/segmentation_models.pytorch
- Docs: https://smp.readthedocs.io/en/latest/
This model has been pushed to the Hub using the PytorchModelHubMixin