davinnnnn's picture
End of training
3328f74
|
raw
history blame
1.77 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- banking77
metrics:
- f1
model-index:
- name: bert-base-banking77-pt2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: banking77
type: banking77
config: default
split: test
args: default
metrics:
- name: F1
type: f1
value: 0.9268871430614675
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-banking77-pt2
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the banking77 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3282
- F1: 0.9269
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.2577 | 1.0 | 626 | 0.9024 | 0.8236 |
| 0.4501 | 2.0 | 1252 | 0.4119 | 0.9129 |
| 0.2257 | 3.0 | 1878 | 0.3282 | 0.9269 |
### Framework versions
- Transformers 4.27.1
- Pytorch 2.1.0+cu121
- Datasets 2.9.0
- Tokenizers 0.13.3