davidschulte's picture
Upload README.md with huggingface_hub
15868b1 verified
---
base_model: bert-base-multilingual-uncased
datasets:
- sileod/mindgames
license: apache-2.0
tags:
- embedding_space_map
- BaseLM:bert-base-multilingual-uncased
---
# ESM sileod/mindgames
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
ESM
- **Developed by:** David Schulte
- **Model type:** ESM
- **Base Model:** bert-base-multilingual-uncased
- **Intermediate Task:** sileod/mindgames
- **ESM architecture:** linear
- **Language(s) (NLP):** [More Information Needed]
- **License:** Apache-2.0 license
## Training Details
### Intermediate Task
- **Task ID:** sileod/mindgames
- **Subset [optional]:** default
- **Text Column:** ['premise', 'hypothesis']
- **Label Column:** label
- **Dataset Split:** train
- **Sample size [optional]:** 10000
- **Sample seed [optional]:** 42
### Training Procedure [optional]
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Language Model Training Hyperparameters [optional]
- **Epochs:** 3
- **Batch size:** 32
- **Learning rate:** 2e-05
- **Weight Decay:** 0.01
- **Optimizer**: AdamW
### ESM Training Hyperparameters [optional]
- **Epochs:** 10
- **Batch size:** 32
- **Learning rate:** 0.001
- **Weight Decay:** 0.01
- **Optimizer**: AdamW
### Additional trainiung details [optional]
## Model evaluation
### Evaluation of fine-tuned language model [optional]
### Evaluation of ESM [optional]
MSE:
### Additional evaluation details [optional]
## What are Embedding Space Maps?
<!-- This section describes the evaluation protocols and provides the results. -->
Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text.
ESMs can be used for intermediate task selection with the ESM-LogME workflow.
## How can I use Embedding Space Maps for Intermediate Task Selection?
[![PyPI version](https://img.shields.io/pypi/v/hf-dataset-selector.svg)](https://pypi.org/project/hf-dataset-selector)
We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps.
**hf-dataset-selector** fetches ESMs for a given language model and uses it to find the best dataset for applying intermediate training to the target task. ESMs are found by their tags on the Huggingface Hub.
```python
from hfselect import Dataset, compute_task_ranking
# Load target dataset from the Hugging Face Hub
dataset = Dataset.from_hugging_face(
name="stanfordnlp/imdb",
split="train",
text_col="text",
label_col="label",
is_regression=False,
num_examples=1000,
seed=42
)
# Fetch ESMs and rank tasks
task_ranking = compute_task_ranking(
dataset=dataset,
model_name="bert-base-multilingual-uncased"
)
# Display top 5 recommendations
print(task_ranking[:5])
```
For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector).
## Citation
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
If you are using this Embedding Space Maps, please cite our [paper](https://arxiv.org/abs/2410.15148).
**BibTeX:**
```
@misc{schulte2024moreparameterefficientselectionintermediate,
title={Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning},
author={David Schulte and Felix Hamborg and Alan Akbik},
year={2024},
eprint={2410.15148},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2410.15148},
}
```
**APA:**
```
Schulte, D., Hamborg, F., & Akbik, A. (2024). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. arXiv preprint arXiv:2410.15148.
```
## Additional Information