davidliu1110's picture
update model card README.md
54f0ca2
|
raw
history blame
3.41 kB
---
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-chinese-david-ner
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-chinese-david-ner
This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0677
- Precision: 0.8954
- Recall: 0.8935
- F1: 0.8945
- Accuracy: 0.9830
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 1.1093 | 0.14 | 50 | 0.5193 | 0.16 | 0.1304 | 0.1437 | 0.8199 |
| 0.3453 | 0.28 | 100 | 0.1877 | 0.5811 | 0.6696 | 0.6222 | 0.9390 |
| 0.2117 | 0.42 | 150 | 0.1344 | 0.6907 | 0.7087 | 0.6996 | 0.9526 |
| 0.193 | 0.56 | 200 | 0.1159 | 0.7228 | 0.7370 | 0.7298 | 0.9593 |
| 0.1625 | 0.7 | 250 | 0.1191 | 0.7367 | 0.7543 | 0.7454 | 0.9603 |
| 0.1302 | 0.84 | 300 | 0.1448 | 0.7332 | 0.7587 | 0.7457 | 0.9550 |
| 0.1396 | 0.98 | 350 | 0.0899 | 0.8226 | 0.8370 | 0.8297 | 0.9720 |
| 0.0966 | 1.12 | 400 | 0.0918 | 0.8240 | 0.8348 | 0.8294 | 0.9732 |
| 0.1077 | 1.26 | 450 | 0.0824 | 0.7944 | 0.8565 | 0.8243 | 0.9742 |
| 0.0895 | 1.4 | 500 | 0.0793 | 0.8121 | 0.8457 | 0.8285 | 0.9761 |
| 0.0968 | 1.54 | 550 | 0.0797 | 0.8409 | 0.85 | 0.8454 | 0.9773 |
| 0.1172 | 1.68 | 600 | 0.0694 | 0.8422 | 0.8587 | 0.8504 | 0.9792 |
| 0.0974 | 1.82 | 650 | 0.0710 | 0.8354 | 0.8609 | 0.8480 | 0.9780 |
| 0.0941 | 1.96 | 700 | 0.0650 | 0.8543 | 0.8543 | 0.8543 | 0.9804 |
| 0.0755 | 2.09 | 750 | 0.0673 | 0.8789 | 0.8674 | 0.8731 | 0.9816 |
| 0.0559 | 2.23 | 800 | 0.0744 | 0.8544 | 0.8674 | 0.8608 | 0.9792 |
| 0.0689 | 2.37 | 850 | 0.0707 | 0.8596 | 0.8652 | 0.8624 | 0.9799 |
| 0.0525 | 2.51 | 900 | 0.0677 | 0.8954 | 0.8935 | 0.8945 | 0.9830 |
| 0.0631 | 2.65 | 950 | 0.0646 | 0.8886 | 0.8848 | 0.8867 | 0.9830 |
| 0.0699 | 2.79 | 1000 | 0.0630 | 0.8932 | 0.8913 | 0.8923 | 0.9840 |
| 0.053 | 2.93 | 1050 | 0.0636 | 0.8950 | 0.8891 | 0.8920 | 0.9837 |
### Framework versions
- Transformers 4.29.0.dev0
- Pytorch 1.10.1+cu113
- Datasets 2.11.0
- Tokenizers 0.13.3