metadata
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-chinese-david-ner
results: []
bert-base-chinese-david-ner
This model is a fine-tuned version of bert-base-chinese on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2217
- Precision: 0.8020
- Recall: 0.8379
- F1: 0.8196
- Accuracy: 0.9471
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.2487 | 1.4 | 500 | 0.2446 | 0.8138 | 0.8138 | 0.8138 | 0.9417 |
0.0668 | 2.8 | 1000 | 0.2217 | 0.8020 | 0.8379 | 0.8196 | 0.9471 |
Framework versions
- Transformers 4.29.0.dev0
- Pytorch 1.10.1+cu113
- Datasets 2.11.0
- Tokenizers 0.13.3