davidkim205 commited on
Commit
0951bda
β€’
1 Parent(s): 613a10a

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +213 -0
README.md ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ko
5
+ pipeline_tag: text-generation
6
+ inference: false
7
+ tags:
8
+ - facebook
9
+ - meta
10
+ - pytorch
11
+ - llama
12
+ - llama-2-chat
13
+ license: apache-2.0
14
+ ---
15
+ # komt : korean multi task instruction tuning model
16
+ ![multi task instruction tuning.jpg](https://github.com/davidkim205/komt/assets/16680469/c7f6ade7-247e-4b62-a94f-47e19abea68e)
17
+
18
+ Recently, due to the success of ChatGPT, numerous large language models have emerged in an attempt to catch up with ChatGPT's capabilities.
19
+ However, when it comes to Korean language performance, it has been observed that many models still struggle to provide accurate answers or generate Korean text effectively.
20
+ This study addresses these challenges by introducing a multi-task instruction technique that leverages supervised datasets from various tasks to create training data for Large Language Models (LLMs).
21
+
22
+ ## Model Details
23
+
24
+ * **Model Developers** : davidkim(changyeon kim)
25
+ * **Repository** : https://github.com/davidkim205/komt
26
+ * **Model Architecture** : komt-llama-30b is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning by multi-task instruction
27
+ * **License**: This model is under a **Non-commercial** Bespoke License and governed by the Meta license.
28
+ * **Base Model*** : upstage/llama-30b-instruct-2048
29
+
30
+ ## Dataset
31
+ korean multi-task instruction dataset
32
+
33
+ ## Hardware and Software
34
+ - nvidia driver : 535.54.03
35
+ - CUDA Version: 12.2
36
+
37
+ ## Training
38
+ Refer https://github.com/davidkim205/komt
39
+
40
+ ## Usage
41
+ ```
42
+ from transformers import AutoTokenizer, AutoModelForCausalLM
43
+ from transformers import TextStreamer, GenerationConfig
44
+
45
+ model_name='davidkim205/komt-llama-30b-v1'
46
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
47
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
48
+ streamer = TextStreamer(tokenizer)
49
+
50
+ def gen(x):
51
+ generation_config = GenerationConfig(
52
+ temperature=0.8,
53
+ top_p=0.8,
54
+ top_k=100,
55
+ max_new_tokens=512,
56
+ early_stopping=True,
57
+ do_sample=True,
58
+ )
59
+ q = f"### instruction: {x}\n\n### Response: "
60
+ gened = model.generate(
61
+ **tokenizer(
62
+ q,
63
+ return_tensors='pt',
64
+ return_token_type_ids=False
65
+ ).to('cuda'),
66
+ generation_config=generation_config,
67
+ pad_token_id=tokenizer.eos_token_id,
68
+ eos_token_id=tokenizer.eos_token_id,
69
+ streamer=streamer,
70
+ )
71
+ result_str = tokenizer.decode(gened[0])
72
+
73
+ start_tag = f"\n\n### Response: "
74
+ start_index = result_str.find(start_tag)
75
+
76
+ if start_index != -1:
77
+ result_str = result_str[start_index + len(start_tag):].strip()
78
+ return result_str
79
+
80
+ print(gen('μ œμ£Όλ„λ₯Ό 1λ°•2일둜 혼자 μ—¬ν–‰ν•˜λ €κ³  ν•˜λŠ”λ° μ—¬ν–‰ μ½”μŠ€λ₯Ό λ§Œλ“€μ–΄μ€˜'))
81
+ ```
82
+ output
83
+ ```
84
+ ### Response: μ œμ£Όλ„λ₯Ό 1λ°•2일둜 혼자 μ—¬ν–‰ν•˜λ €λ©΄ λ‹€μŒκ³Ό 같은 μ—¬ν–‰ μ½”μŠ€λ₯Ό λ§Œλ“€μ–΄ κ³„νšν•  수 μžˆμŠ΅λ‹ˆλ‹€:
85
+
86
+ 1일차:
87
+ - μ•„μΉ¨: μ œμ£Όλ„μ˜ μ•„λ¦„λ‹€μš΄ 해변을 κ΅¬κ²½ν•˜κΈ° μœ„ν•΄ 해변에 λ„μ°©ν•˜μ„Έμš”. μΌμΆœμ„ κ°μƒν•˜λ©° μžμ—°μ˜ 아름닀움을 λ§Œλ½ν•˜μ„Έμš”.
88
+ - μ˜€ν›„: μ œμ£Όλ„μ˜ λŒ€ν‘œμ μΈ 관광지인 ν•œλΌμ‚°μ„ νƒν—˜ν•˜μ„Έμš”. λ“±μ‚°λ‘œλ₯Ό 따라 μ˜¬λΌκ°€λ©΄μ„œ 경치λ₯Ό 즐기고 μ„€λͺ…을 λ“£μœΌλ©° μ‰¬μš΄ 산책을 μ¦κΈ°μ„Έμš”.
89
+ - 저녁: μ œμ£Όλ„μ˜ λ§›μžˆλŠ” μŒμ‹μ μ—μ„œ 저녁을 λ³΄λ‚΄μ„Έμš”. μ‹ μ„ ν•œ ν•΄μ‚°λ¬Όκ³Ό ν–₯μ‹ λ£Œλ‘œ λ§Œλ“  μŒμ‹μ„ λ§›λ³΄λŠ” 것은 μ œμ£Όλ„ μ—¬ν–‰μ˜ μ™„λ²½ν•œ κ²½ν—˜μ΄ 될 κ²ƒμž…λ‹ˆλ‹€.
90
+
91
+ 2일차:
92
+ - μ•„μΉ¨: ν•œλΌμ‚° μΌλŒ€λ₯Ό νƒν—˜ν•˜κΈ° μœ„ν•΄ ν•œλΌμ‚° μΌ€μ΄ν”„λ‘œ μ΄λ™ν•˜μ„Έμš”. 이 μΌ€μ΄ν”„λŠ” 등산을 μ¦κΈ°λŠ” μ‚¬λžŒλ“€μ—κ²Œ 졜적의 μ„ νƒμž…λ‹ˆλ‹€.
93
+
94
+ ```
95
+ ## Evaluation
96
+ For objective model evaluation, we initially used EleutherAI's lm-evaluation-harness but obtained unsatisfactory results. Consequently, we conducted evaluations using ChatGPT, a widely used model, as described in [Self-Alignment with Instruction Backtranslation](https://arxiv.org/pdf/2308.06502.pdf) and [Three Ways of Using Large Language Models to Evaluate Chat](https://arxiv.org/pdf/2308.06259.pdf) .
97
+
98
+ | model | score | average(0~5) | percentage |
99
+ | --------------------------------------- | ------- | ------------ | ---------- |
100
+ | gpt-3.5-turbo(close) | 147 | 3.97 | 79.45% |
101
+ | naver Cue(close) | 140 | 3.78 | 75.67% |
102
+ | clova X(close) | 136 | 3.67 | 73.51% |
103
+ | WizardLM-13B-V1.2(open) | 96 | 2.59 | 51.89% |
104
+ | Llama-2-7b-chat-hf(open) | 67 | 1.81 | 36.21% |
105
+ | Llama-2-13b-chat-hf(open) | 73 | 1.91 | 38.37% |
106
+ | nlpai-lab/kullm-polyglot-12.8b-v2(open) | 70 | 1.89 | 37.83% |
107
+ | kfkas/Llama-2-ko-7b-Chat(open) | 96 | 2.59 | 51.89% |
108
+ | beomi/KoAlpaca-Polyglot-12.8B(open) | 100 | 2.70 | 54.05% |
109
+ | **komt-llama2-7b-v1 (open)(ours)** | **117** | **3.16** | **63.24%** |
110
+ | **komt-llama2-13b-v1 (open)(ours)** | **129** | **3.48** | **69.72%** |
111
+ | **komt-llama-30b-v1 (open)(ours)** | **129** | **3.16** | **63.24%** |
112
+ | **komt-mistral-7b-v1 (open)(ours)** | **123** | **3.32** | **66.48%** |
113
+
114
+
115
+ ------------------------------------------------
116
+ # Original model card: Meta's Llama 2 7B-chat
117
+
118
+ Meta developed and released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.
119
+
120
+ **Model Developers** Meta
121
+
122
+ **Variations** Llama 2 comes in a range of parameter sizes β€” 7B, 13B, and 70B β€” as well as pretrained and fine-tuned variations.
123
+
124
+ **Input** Models input text only.
125
+
126
+ **Output** Models generate text only.
127
+
128
+ **Model Architecture** Llama 2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align to human preferences for helpfulness and safety.
129
+
130
+ ||Training Data|Params|Content Length|GQA|Tokens|LR|
131
+ |---|---|---|---|---|---|---|
132
+ Llama 2|*A new mix of publicly available online data*|7B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>
133
+ Llama 2|*A new mix of publicly available online data*|13B|4k|&#10007;|2.0T|3.0 x 10<sup>-4</sup>
134
+ Llama 2|*A new mix of publicly available online data*|70B|4k|&#10004;|2.0T|1.5 x 10<sup>-4</sup>
135
+
136
+ **Llama 2 family of models.** Token counts refer to pretraining data only. All models are trained with a global batch-size of 4M tokens. The 70B version uses Grouped-Query Attention (GQA) for improved inference scalability.
137
+
138
+ **Model Dates** Llama 2 was trained between January 2023 and July 2023.
139
+
140
+ **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
141
+
142
+ **License** A custom commercial license is available at: [https://ai.meta.com/resources/models-and-libraries/llama-downloads/](https://ai.meta.com/resources/models-and-libraries/llama-downloads/)
143
+
144
+ **Research Paper** More information can be found in the paper "Llama-2: Open Foundation and Fine-tuned Chat Models", available at https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/.
145
+
146
+ **Where to send questions or comments about the model** Instructions on how to provide feedback or comments on the model can be found in the model [README](README.md).
147
+
148
+ # **Intended Use**
149
+ **Intended Use Cases** Llama 2 is intended for commercial and research use in English. Tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
150
+
151
+ **Out-of-scope Uses** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English. Use in any other way that is prohibited by the Acceptable Use Policy and Licensing Agreement for Llama 2.
152
+
153
+ # **Hardware and Software**
154
+ **Training Factors** We used custom training libraries, Meta's Research Super Cluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
155
+
156
+ **Carbon Footprint** Pretraining utilized a cumulative 3.3M GPU hours of computation on hardware of type A100-80GB (TDP of 350-400W). Estimated total emissions were 539 tCO2eq, 100% of which were offset by Meta’s sustainability program.
157
+
158
+ ||Time (GPU hours)|Power Consumption (W)|Carbon Emitted(tCO<sub>2</sub>eq)|
159
+ |---|---|---|---|
160
+ |Llama 2 7B|184320|400|31.22|
161
+ |Llama 2 13B|368640|400|62.44|
162
+ |Llama 2 70B|1720320|400|291.42|
163
+ |Total|3311616||539.00|
164
+
165
+ **CO<sub>2</sub> emissions during pretraining.** Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
166
+
167
+ # **Training Data**
168
+ **Overview** Llama 2 was pretrained on 2 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over one million new human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
169
+
170
+ **Data Freshness** The pretraining data has a cutoff of September 2022, but some tuning data is more recent, up to July 2023.
171
+
172
+ # **Evaluation Results**
173
+
174
+ In this section, we report the results for the Llama 1 and Llama 2 models on standard academic benchmarks.
175
+ For all the evaluations, we use our internal evaluations library.
176
+
177
+ |Model|Size|Code|Commonsense Reasoning|World Knowledge|Reading Comprehension|Math|MMLU|BBH|AGI Eval|
178
+ |---|---|---|---|---|---|---|---|---|---|
179
+ |Llama 1|7B|14.1|60.8|46.2|58.5|6.95|35.1|30.3|23.9|
180
+ |Llama 1|13B|18.9|66.1|52.6|62.3|10.9|46.9|37.0|33.9|
181
+ |Llama 1|33B|26.0|70.0|58.4|67.6|21.4|57.8|39.8|41.7|
182
+ |Llama 1|65B|30.7|70.7|60.5|68.6|30.8|63.4|43.5|47.6|
183
+ |Llama 2|7B|16.8|63.9|48.9|61.3|14.6|45.3|32.6|29.3|
184
+ |Llama 2|13B|24.5|66.9|55.4|65.8|28.7|54.8|39.4|39.1|
185
+ |Llama 2|70B|**37.5**|**71.9**|**63.6**|**69.4**|**35.2**|**68.9**|**51.2**|**54.2**|
186
+
187
+ **Overall performance on grouped academic benchmarks.** *Code:* We report the average pass@1 scores of our models on HumanEval and MBPP. *Commonsense Reasoning:* We report the average of PIQA, SIQA, HellaSwag, WinoGrande, ARC easy and challenge, OpenBookQA, and CommonsenseQA. We report 7-shot results for CommonSenseQA and 0-shot results for all other benchmarks. *World Knowledge:* We evaluate the 5-shot performance on NaturalQuestions and TriviaQA and report the average. *Reading Comprehension:* For reading comprehension, we report the 0-shot average on SQuAD, QuAC, and BoolQ. *MATH:* We report the average of the GSM8K (8 shot) and MATH (4 shot) benchmarks at top 1.
188
+
189
+ |||TruthfulQA|Toxigen|
190
+ |---|---|---|---|
191
+ |Llama 1|7B|27.42|23.00|
192
+ |Llama 1|13B|41.74|23.08|
193
+ |Llama 1|33B|44.19|22.57|
194
+ |Llama 1|65B|48.71|21.77|
195
+ |Llama 2|7B|33.29|**21.25**|
196
+ |Llama 2|13B|41.86|26.10|
197
+ |Llama 2|70B|**50.18**|24.60|
198
+
199
+ **Evaluation of pretrained LLMs on automatic safety benchmarks.** For TruthfulQA, we present the percentage of generations that are both truthful and informative (the higher the better). For ToxiGen, we present the percentage of toxic generations (the smaller the better).
200
+
201
+
202
+ |||TruthfulQA|Toxigen|
203
+ |---|---|---|---|
204
+ |Llama-2-Chat|7B|57.04|**0.00**|
205
+ |Llama-2-Chat|13B|62.18|**0.00**|
206
+ |Llama-2-Chat|70B|**64.14**|0.01|
207
+
208
+ **Evaluation of fine-tuned LLMs on different safety datasets.** Same metric definitions as above.
209
+
210
+ # **Ethical Considerations and Limitations**
211
+ Llama 2 is a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2, developers should perform safety testing and tuning tailored to their specific applications of the model.
212
+
213
+ Please see the Responsible Use Guide available at [https://ai.meta.com/llama/responsible-use-guide/](https://ai.meta.com/llama/responsible-use-guide/)