metadata
license: apache-2.0
base_model: davidilag/whisper-large-no-is-145h-30k-steps
tags:
- generated_from_trainer
datasets:
- ravnursson_asr
metrics:
- wer
model-index:
- name: whisper-large-no-is-fo-100h-30k-steps
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ravnursson_asr
type: ravnursson_asr
config: ravnursson_asr
split: test
args: ravnursson_asr
metrics:
- name: Wer
type: wer
value: 3.7900140930138915
whisper-large-no-is-fo-100h-30k-steps
This model is a fine-tuned version of davidilag/whisper-large-no-is-145h-30k-steps on the ravnursson_asr dataset. It achieves the following results on the evaluation set:
- Loss: 0.0705
- Wer: 3.7900
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 30000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.1991 | 0.2320 | 1000 | 0.2157 | 15.4419 |
0.1363 | 0.4640 | 2000 | 0.1465 | 11.2241 |
0.1042 | 0.6961 | 3000 | 0.1207 | 9.4625 |
0.1133 | 0.9281 | 4000 | 0.1072 | 8.6622 |
0.0525 | 1.1601 | 5000 | 0.1006 | 7.7914 |
0.0514 | 1.3921 | 6000 | 0.0986 | 7.3737 |
0.0455 | 1.6241 | 7000 | 0.0926 | 6.8150 |
0.0499 | 1.8561 | 8000 | 0.0836 | 6.4778 |
0.0199 | 2.0882 | 9000 | 0.0798 | 5.7882 |
0.0213 | 2.3202 | 10000 | 0.0783 | 5.7932 |
0.0191 | 2.5522 | 11000 | 0.0774 | 5.6221 |
0.0272 | 2.7842 | 12000 | 0.0738 | 5.5466 |
0.0098 | 3.0162 | 13000 | 0.0763 | 5.4560 |
0.0106 | 3.2483 | 14000 | 0.0772 | 5.4610 |
0.0097 | 3.4803 | 15000 | 0.0769 | 5.0685 |
0.0099 | 3.7123 | 16000 | 0.0761 | 5.0936 |
0.01 | 3.9443 | 17000 | 0.0716 | 4.9175 |
0.0022 | 4.1763 | 18000 | 0.0796 | 4.8420 |
0.0039 | 4.4084 | 19000 | 0.0726 | 4.5702 |
0.0037 | 4.6404 | 20000 | 0.0719 | 4.3839 |
0.0041 | 4.8724 | 21000 | 0.0712 | 4.4846 |
0.0021 | 5.1044 | 22000 | 0.0723 | 4.2078 |
0.003 | 5.3364 | 23000 | 0.0705 | 4.2078 |
0.0019 | 5.5684 | 24000 | 0.0724 | 4.1675 |
0.0034 | 5.8005 | 25000 | 0.0723 | 4.1272 |
0.0011 | 6.0325 | 26000 | 0.0713 | 4.0769 |
0.0007 | 6.2645 | 27000 | 0.0694 | 3.9561 |
0.0015 | 6.4965 | 28000 | 0.0719 | 3.8957 |
0.0005 | 6.7285 | 29000 | 0.0707 | 3.8907 |
0.0006 | 6.9606 | 30000 | 0.0705 | 3.7900 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1