gerskill-bert / README.md
dathi103's picture
End of training
dc7d71d verified
metadata
license: mit
base_model: bert-base-german-cased
tags:
  - generated_from_trainer
model-index:
  - name: gerskill-bert
    results: []

gerskill-bert

This model is a fine-tuned version of bert-base-german-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1187
  • Hard: {'precision': 0.7063339731285988, 'recall': 0.8070175438596491, 'f1': 0.7533265097236438, 'number': 456}
  • Soft: {'precision': 0.7111111111111111, 'recall': 0.7804878048780488, 'f1': 0.7441860465116279, 'number': 82}
  • Overall Precision: 0.7070
  • Overall Recall: 0.8030
  • Overall F1: 0.7520
  • Overall Accuracy: 0.9644

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Hard Soft Overall Precision Overall Recall Overall F1 Overall Accuracy
No log 1.0 178 0.1433 {'precision': 0.5503355704697986, 'recall': 0.7192982456140351, 'f1': 0.6235741444866921, 'number': 456} {'precision': 0.5137614678899083, 'recall': 0.6829268292682927, 'f1': 0.5863874345549738, 'number': 82} 0.5447 0.7138 0.6179 0.9448
No log 2.0 356 0.1181 {'precision': 0.7031578947368421, 'recall': 0.7324561403508771, 'f1': 0.7175080558539205, 'number': 456} {'precision': 0.6585365853658537, 'recall': 0.6585365853658537, 'f1': 0.6585365853658537, 'number': 82} 0.6966 0.7212 0.7087 0.9544
0.1645 3.0 534 0.1079 {'precision': 0.6605839416058394, 'recall': 0.793859649122807, 'f1': 0.7211155378486056, 'number': 456} {'precision': 0.6966292134831461, 'recall': 0.7560975609756098, 'f1': 0.7251461988304092, 'number': 82} 0.6656 0.7881 0.7217 0.9603
0.1645 4.0 712 0.1146 {'precision': 0.7030651340996169, 'recall': 0.8048245614035088, 'f1': 0.7505112474437627, 'number': 456} {'precision': 0.6739130434782609, 'recall': 0.7560975609756098, 'f1': 0.7126436781609194, 'number': 82} 0.6987 0.7974 0.7448 0.9621
0.1645 5.0 890 0.1187 {'precision': 0.7063339731285988, 'recall': 0.8070175438596491, 'f1': 0.7533265097236438, 'number': 456} {'precision': 0.7111111111111111, 'recall': 0.7804878048780488, 'f1': 0.7441860465116279, 'number': 82} 0.7070 0.8030 0.7520 0.9644

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2