Datasets:
zmrr
/

ArXiv:
License:
SweepNetDataset / README.md
zmrr's picture
Update README.md
5659295 verified
---
license: apache-2.0
---
# SweepNet Dataset
This repository contains three datasets used in [SweepNet](https://arxiv.org/abs/2407.06305). One dataset comprised of 20,000 sweep surfaces for neural sweeper training and two datasets used in quantitative evaluations. All datasets are preprocessed.
## Neural Sweeper Dataset
We created 20,000 sweep surface samples to train the neural sweeper, please refer to the supplementary material for the training details.
We provided sweep surfaces with 3, 4 and 5 control points, structured as follows:
```
neuralSweeperData/
β”œβ”€β”€ control_point_i/
β”‚ β”œβ”€β”€ sweep_surface_index/
β”‚ β”‚ β”œβ”€β”€ parameterse.txt # sweep surface parameters
β”‚ β”‚ β”œβ”€β”€ bspline.ply #visualized sweeping axis
β”‚ β”‚ β”œβ”€β”€ sample_profile.obj #visualized profile
β”‚ β”‚ β”œβ”€β”€ result_sweep.ply # sweep surface
β”‚ β”‚ β”œβ”€β”€ manifold_points.npy # key points on the sweep surface
β”‚ β”‚ β”œβ”€β”€ sweep_occupancy_v1.npy # Occupancy field of the sweep surface
```
## GC-Object Dataset
We sampled 50 generalised cylinder featured objects from internet and prior works [OreX](https://arxiv.org/abs/2211.12886), [GCD](https://vcc.tech/research/2015/GCD#:~:text=Our%20decomposition%20algorithm%20progressively%20builds,on%20decomposition%20to%20global%20optimization.).
We provide processed 3D models here. Please consider cite us and the prior works if you find the dataset useful.
```
GC_objects/
β”œβ”€β”€ model name/
β”‚ β”œβ”€β”€ oracle.obj # Oracle 3D model (not the input)
β”‚ β”œβ”€β”€ voxel_64_mc.off # 3D model reconstructed from input voxel
β”‚ β”œβ”€β”€ skeletal_prior.ply # Model skeletons
β”‚ β”œβ”€β”€ model_surface_point_cloud.ply # Surface point cloud for point cloud input modality
β”œβ”€β”€ test_names.npz # List of all model names
β”œβ”€β”€ voxel2pc.hdf5 # Model voxels and occupancy field used for training
β”œβ”€β”€ ae_voxel_points_samples.hdf5 # Model voxels and occupancy field used *only* for testing
```
## Quadrupeds Dataset
We use quadrupeds dataset from [Tulsiani et al.](https://github.com/shubhtuls/volumetricPrimitives/issues/7) to benchmark SweepNet. We provide the processed data here, please cite us if you used our processed data.
```
quadrupeds/
β”œβ”€β”€ model name/
β”‚ β”œβ”€β”€ oracle.obj # Oracle 3D model (not the input)
β”‚ β”œβ”€β”€ skeletal_prior.ply # Model skeletons
β”‚ β”œβ”€β”€ model_surface_point_cloud.ply # Surface point cloud for point cloud input modality
β”œβ”€β”€ test_names.npz # List of all model names
β”œβ”€β”€ voxel2pc.hdf5 # Model voxels and occupancy field used for training
β”œβ”€β”€ ae_voxel_points_samples.hdf5 # Model voxels and occupancy field used *only* for testing
```