zhibei1204 commited on
Commit
d8d969d
1 Parent(s): a387a0e

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +84 -2
README.md CHANGED
@@ -1,3 +1,85 @@
1
- ---
2
  license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  license: apache-2.0
2
+ # DiagramQG Dataset
3
+
4
+ ![Dataset Examples](example.pdf)
5
+ *Figure 1: Four different examples of different subjects in DiagramQG dataset.*
6
+
7
+ ![Domain Distribution](course.pdf)
8
+ *Figure 2: Domain diversity in DiagramQG. Each color corresponds to one subject: Natural Science (blue), Earth Science (yellow), Applied Science (green), and Social Science (orange).*
9
+
10
+ ## Overview
11
+ DiagramQG is a comprehensive educational dataset focused on scientific diagram question generation. It contains:
12
+
13
+ - 19,475 unique questions
14
+ - 8,372 diagrams
15
+ - 44,472 combinations of (target & concept text constraint, diagram, question)
16
+ - Coverage across 4 subjects, 15 courses, and 169 concepts
17
+
18
+ ## Dataset Structure
19
+
20
+ ### Subject Areas
21
+ The dataset covers four main subject areas:
22
+ - Natural Science
23
+ - Earth Science
24
+ - Applied Science
25
+ - Social Science
26
+
27
+ ### Hierarchical Organization
28
+ Data is organized hierarchically:
29
+ 1. Subject (e.g., Natural Science)
30
+ 2. Course (e.g., Biology)
31
+ 3. Concept (e.g., Ecological interactions)
32
+
33
+ ## Data Collection Process
34
+
35
+ ### Phase 1: Initial Data Gathering
36
+ - Sources: Existing datasets and Google Image Search
37
+ - Raw dataset: 20,000+ diagrams and 40,000+ questions
38
+
39
+ ### Phase 2: Organization
40
+ - Classification into 4 subjects and 15 courses
41
+ - Mapping questions to 169 distinct concepts
42
+
43
+ ### Phase 3: Annotation
44
+ - Trained crowd workers annotate:
45
+ - Target & concept text constraints
46
+ - Diagram elements and texts
47
+ - Produced 70,000+ unique combinations
48
+
49
+ ### Phase 4: Quality Assurance
50
+ - Secondary crowd worker evaluation (0-100 scale)
51
+ - Filtered combinations below 60 points
52
+ - Final dataset: 44,472 validated combinations
53
+
54
+ ## Dataset Analysis
55
+
56
+ ### Question Distribution
57
+ ![Question Distribution](sunburst_chart_hd.png)
58
+ *Figure 3: Question distribution in DiagramQG.*
59
+
60
+ ### Concept Distribution
61
+ ![Concept Distribution](proportions_plot_v6.png)
62
+ *Figure 4: Distribution of diagrams, questions, and questions per diagram ratios across different concepts in DiagramQG.*
63
+
64
+ ### Dataset Comparison
65
+ | Dataset | Questions | Images | Objects/Image | Image Type | Constraints | Knowledge Type |
66
+ |---------|-----------|---------|---------------|------------|-------------|----------------|
67
+ | VQAv2.0 | 1.1M | 20k | 3.5 | natural | answer | N/A |
68
+ | FVQA | 5,826 | 2k | 2.9 | natural | answer | common-sense |
69
+ | VQG-COCO | 25,000 | 5k | 3.3 | natural | image, caption | common-sense |
70
+ | K-VQG | 16,098 | 13K | 2.7 | natural | knowledge triple | common-sense |
71
+ | DiagramQG | 19,475 | 8,372 | 11.2 | diagram | target, concept | subject knowledge |
72
+
73
+ ## Unique Challenges
74
+
75
+ 1. **Domain-specific Knowledge Requirement**
76
+ - Requires understanding of specialized subject concepts
77
+ - Goes beyond common sense reasoning
78
+
79
+ 2. **Long-tail Distribution**
80
+ - Uneven concept coverage
81
+ - Challenges in model generalization
82
+
83
+ 3. **High Information Density**
84
+ - Complex diagram interpretation
85
+ - Dense visual information processing