zhibei1204 commited on
Commit
a387a0e
·
verified ·
1 Parent(s): 7ddb28d

Delete readme.md

Browse files
Files changed (1) hide show
  1. readme.md +0 -84
readme.md DELETED
@@ -1,84 +0,0 @@
1
- # DiagramQG Dataset
2
-
3
- ![Dataset Examples](example.pdf)
4
- *Figure 1: Four different examples of different subjects in DiagramQG dataset.*
5
-
6
- ![Domain Distribution](course.pdf)
7
- *Figure 2: Domain diversity in DiagramQG. Each color corresponds to one subject: Natural Science (blue), Earth Science (yellow), Applied Science (green), and Social Science (orange).*
8
-
9
- ## Overview
10
- DiagramQG is a comprehensive educational dataset focused on scientific diagram question generation. It contains:
11
-
12
- - 19,475 unique questions
13
- - 8,372 diagrams
14
- - 44,472 combinations of (target & concept text constraint, diagram, question)
15
- - Coverage across 4 subjects, 15 courses, and 169 concepts
16
-
17
- ## Dataset Structure
18
-
19
- ### Subject Areas
20
- The dataset covers four main subject areas:
21
- - Natural Science
22
- - Earth Science
23
- - Applied Science
24
- - Social Science
25
-
26
- ### Hierarchical Organization
27
- Data is organized hierarchically:
28
- 1. Subject (e.g., Natural Science)
29
- 2. Course (e.g., Biology)
30
- 3. Concept (e.g., Ecological interactions)
31
-
32
- ## Data Collection Process
33
-
34
- ### Phase 1: Initial Data Gathering
35
- - Sources: Existing datasets and Google Image Search
36
- - Raw dataset: 20,000+ diagrams and 40,000+ questions
37
-
38
- ### Phase 2: Organization
39
- - Classification into 4 subjects and 15 courses
40
- - Mapping questions to 169 distinct concepts
41
-
42
- ### Phase 3: Annotation
43
- - Trained crowd workers annotate:
44
- - Target & concept text constraints
45
- - Diagram elements and texts
46
- - Produced 70,000+ unique combinations
47
-
48
- ### Phase 4: Quality Assurance
49
- - Secondary crowd worker evaluation (0-100 scale)
50
- - Filtered combinations below 60 points
51
- - Final dataset: 44,472 validated combinations
52
-
53
- ## Dataset Analysis
54
-
55
- ### Question Distribution
56
- ![Question Distribution](sunburst_chart_hd.png)
57
- *Figure 3: Question distribution in DiagramQG.*
58
-
59
- ### Concept Distribution
60
- ![Concept Distribution](proportions_plot_v6.png)
61
- *Figure 4: Distribution of diagrams, questions, and questions per diagram ratios across different concepts in DiagramQG.*
62
-
63
- ### Dataset Comparison
64
- | Dataset | Questions | Images | Objects/Image | Image Type | Constraints | Knowledge Type |
65
- |---------|-----------|---------|---------------|------------|-------------|----------------|
66
- | VQAv2.0 | 1.1M | 20k | 3.5 | natural | answer | N/A |
67
- | FVQA | 5,826 | 2k | 2.9 | natural | answer | common-sense |
68
- | VQG-COCO | 25,000 | 5k | 3.3 | natural | image, caption | common-sense |
69
- | K-VQG | 16,098 | 13K | 2.7 | natural | knowledge triple | common-sense |
70
- | DiagramQG | 19,475 | 8,372 | 11.2 | diagram | target, concept | subject knowledge |
71
-
72
- ## Unique Challenges
73
-
74
- 1. **Domain-specific Knowledge Requirement**
75
- - Requires understanding of specialized subject concepts
76
- - Goes beyond common sense reasoning
77
-
78
- 2. **Long-tail Distribution**
79
- - Uneven concept coverage
80
- - Challenges in model generalization
81
-
82
- 3. **High Information Density**
83
- - Complex diagram interpretation
84
- - Dense visual information processing