zhibei1204
commited on
Commit
•
7ddb28d
1
Parent(s):
be3df6f
Upload 5 files
Browse files- course.pdf +0 -0
- example.pdf +0 -0
- proportions_plot_v6.png +3 -0
- readme.md +84 -0
- sunburst_chart_hd.png +3 -0
course.pdf
ADDED
Binary file (160 kB). View file
|
|
example.pdf
ADDED
Binary file (202 kB). View file
|
|
proportions_plot_v6.png
ADDED
Git LFS Details
|
readme.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# DiagramQG Dataset
|
2 |
+
|
3 |
+
![Dataset Examples](example.pdf)
|
4 |
+
*Figure 1: Four different examples of different subjects in DiagramQG dataset.*
|
5 |
+
|
6 |
+
![Domain Distribution](course.pdf)
|
7 |
+
*Figure 2: Domain diversity in DiagramQG. Each color corresponds to one subject: Natural Science (blue), Earth Science (yellow), Applied Science (green), and Social Science (orange).*
|
8 |
+
|
9 |
+
## Overview
|
10 |
+
DiagramQG is a comprehensive educational dataset focused on scientific diagram question generation. It contains:
|
11 |
+
|
12 |
+
- 19,475 unique questions
|
13 |
+
- 8,372 diagrams
|
14 |
+
- 44,472 combinations of (target & concept text constraint, diagram, question)
|
15 |
+
- Coverage across 4 subjects, 15 courses, and 169 concepts
|
16 |
+
|
17 |
+
## Dataset Structure
|
18 |
+
|
19 |
+
### Subject Areas
|
20 |
+
The dataset covers four main subject areas:
|
21 |
+
- Natural Science
|
22 |
+
- Earth Science
|
23 |
+
- Applied Science
|
24 |
+
- Social Science
|
25 |
+
|
26 |
+
### Hierarchical Organization
|
27 |
+
Data is organized hierarchically:
|
28 |
+
1. Subject (e.g., Natural Science)
|
29 |
+
2. Course (e.g., Biology)
|
30 |
+
3. Concept (e.g., Ecological interactions)
|
31 |
+
|
32 |
+
## Data Collection Process
|
33 |
+
|
34 |
+
### Phase 1: Initial Data Gathering
|
35 |
+
- Sources: Existing datasets and Google Image Search
|
36 |
+
- Raw dataset: 20,000+ diagrams and 40,000+ questions
|
37 |
+
|
38 |
+
### Phase 2: Organization
|
39 |
+
- Classification into 4 subjects and 15 courses
|
40 |
+
- Mapping questions to 169 distinct concepts
|
41 |
+
|
42 |
+
### Phase 3: Annotation
|
43 |
+
- Trained crowd workers annotate:
|
44 |
+
- Target & concept text constraints
|
45 |
+
- Diagram elements and texts
|
46 |
+
- Produced 70,000+ unique combinations
|
47 |
+
|
48 |
+
### Phase 4: Quality Assurance
|
49 |
+
- Secondary crowd worker evaluation (0-100 scale)
|
50 |
+
- Filtered combinations below 60 points
|
51 |
+
- Final dataset: 44,472 validated combinations
|
52 |
+
|
53 |
+
## Dataset Analysis
|
54 |
+
|
55 |
+
### Question Distribution
|
56 |
+
![Question Distribution](sunburst_chart_hd.png)
|
57 |
+
*Figure 3: Question distribution in DiagramQG.*
|
58 |
+
|
59 |
+
### Concept Distribution
|
60 |
+
![Concept Distribution](proportions_plot_v6.png)
|
61 |
+
*Figure 4: Distribution of diagrams, questions, and questions per diagram ratios across different concepts in DiagramQG.*
|
62 |
+
|
63 |
+
### Dataset Comparison
|
64 |
+
| Dataset | Questions | Images | Objects/Image | Image Type | Constraints | Knowledge Type |
|
65 |
+
|---------|-----------|---------|---------------|------------|-------------|----------------|
|
66 |
+
| VQAv2.0 | 1.1M | 20k | 3.5 | natural | answer | N/A |
|
67 |
+
| FVQA | 5,826 | 2k | 2.9 | natural | answer | common-sense |
|
68 |
+
| VQG-COCO | 25,000 | 5k | 3.3 | natural | image, caption | common-sense |
|
69 |
+
| K-VQG | 16,098 | 13K | 2.7 | natural | knowledge triple | common-sense |
|
70 |
+
| DiagramQG | 19,475 | 8,372 | 11.2 | diagram | target, concept | subject knowledge |
|
71 |
+
|
72 |
+
## Unique Challenges
|
73 |
+
|
74 |
+
1. **Domain-specific Knowledge Requirement**
|
75 |
+
- Requires understanding of specialized subject concepts
|
76 |
+
- Goes beyond common sense reasoning
|
77 |
+
|
78 |
+
2. **Long-tail Distribution**
|
79 |
+
- Uneven concept coverage
|
80 |
+
- Challenges in model generalization
|
81 |
+
|
82 |
+
3. **High Information Density**
|
83 |
+
- Complex diagram interpretation
|
84 |
+
- Dense visual information processing
|
sunburst_chart_hd.png
ADDED
Git LFS Details
|