Datasets:

Modalities:
Text
Formats:
text
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
License:
yoshitomo-matsubara commited on
Commit
d3a2b45
·
1 Parent(s): 25c8198

added formula table

Browse files
Files changed (1) hide show
  1. README.md +37 -4
README.md CHANGED
@@ -49,16 +49,49 @@ task_ids: []
49
  ## Dataset Description
50
 
51
  - **Homepage:**
52
- - **Repository:**
53
  - **Paper:** Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
54
- - **Point of Contact:**
55
 
56
  ### Dataset Summary
57
 
58
  Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
  We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not a SR method con (re)discover physical laws from such datasets.
60
 
61
- This is the Easy set of our SRSD-Feynman datasets, which consists of 30 different physics formulas.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
 
64
  ### Supported Tasks and Leaderboards
@@ -83,7 +116,7 @@ For each dataset, we have
83
  1. train split (txt file, whitespace as a delimiter)
84
  2. val split (txt file, whitespace as a delimiter)
85
  3. test split (txt file, whitespace as a delimiter)
86
- 4. true equation (pickle file)
87
 
88
  ### Data Splits
89
 
 
49
  ## Dataset Description
50
 
51
  - **Homepage:**
52
+ - **Repository:** https://github.com/omron-sinicx/srsd-benchmark
53
  - **Paper:** Rethinking Symbolic Regression Datasets and Benchmarks for Scientific Discovery
54
+ - **Point of Contact:** [Yoshitomo Matsubara](mailto:yoshitom@uci.edu) [Yoshitaka Ushiku](mailto:yoshitaka.ushiku@sinicx.com)
55
 
56
  ### Dataset Summary
57
 
58
  Our SRSD (Feynman) datasets are designed to discuss the performance of Symbolic Regression for Scientific Discovery.
59
  We carefully reviewed the properties of each formula and its variables in [the Feynman Symbolic Regression Database](https://space.mit.edu/home/tegmark/aifeynman.html) to design reasonably realistic sampling range of values so that our SRSD datasets can be used for evaluating the potential of SRSD such as whether or not a SR method con (re)discover physical laws from such datasets.
60
 
61
+ This is the Easy set of our SRSD-Feynman datasets, which consists of the following 30 different physics formulas:
62
+
63
+ | ID | Formula |
64
+ |-----------|---------------------------------------------------------------------------------------------|
65
+ | I.12.1 | \\(F = \mu N_\text{n}\\) |
66
+ | I.12.4 | \\(E = \frac{q_1}{4 \pi \epsilon r^2}\\) |
67
+ | I.12.5 | \\(F = q_2 E\\) |
68
+ | I.14.3 | \\(U = m g z\\) |
69
+ | I.14.4 | \\(U = \frac{k_\text{spring} x^2}{2}\\) |
70
+ | I.18.12 | \\(tau = r F \sin\theta\\) |
71
+ | I.18.16 | \\(L = m r v \sin\theta\\) |
72
+ | I.25.13 | \\(V = \frac{q}{C}\\) |
73
+ | I.26.2 | \\(n = \frac{\sin\theta_1}{\sin\theta_2}\\) |
74
+ | I.27.6 | \\(f = \frac{1}{\frac{1}{d_1}+\frac{n}{d_2}}\\) |
75
+ | I.30.5 | \\(d = \frac{\lambda}{n \sin\theta}\\) |
76
+ | I.43.16 | \\(v = \mu q \frac{V}{d}\\) |
77
+ | I.47.23 | \\(c = \sqrt{\frac{\gamma P}{\rho}}\\) |
78
+ | II.2.42 | \\(J = \kappa (T_2-T_1) \frac{A}{d}\\) |
79
+ | II.3.24 | \\(h = \frac{W}{4 \pi r^2}\\) |
80
+ | II.4.23 | \\(\phi = \frac{q}{4 \pi \epsilon r}\\) |
81
+ | II.8.31 | \\(u = \frac{\epsilon E^2}{2}\\) |
82
+ | II.10.9 | \\(E = \frac{\sigma_\text{free}}{\epsilon} \frac{1}{1+\chi}\\) |
83
+ | II.13.17 | \\(B = \frac{1}{4 \pi \epsilon c^2} \frac{2 I}{r}\\) |
84
+ | II.15.4 | \\(U = -\mu B \cos\theta\\) |
85
+ | II.15.5 | \\(U = -p E \cos\theta\\) |
86
+ | II.27.16 | \\(S = \epsilon c E^2\\) |
87
+ | II.27.18 | \\(u = \epsilon E^2\\) |
88
+ | II.34.11 | \\(\omega = g \frac{q B}{2 m}\\) |
89
+ | II.34.29b | \\(U = 2 \pi g \mu B \frac{J_z}{h}\\) |
90
+ | II.38.3 | \\(F = Y A \frac{\Delta l}{l}\\) |
91
+ | II.38.14 | \\(\mu = \frac{Y}{2 (1+\sigma)}\\) |
92
+ | III.7.38 | \\(\omega = \frac{4 \pi \mu B}{h}\\) |
93
+ | III.12.43 | \\(J = \frac{m h}{2 \pi}\\) |
94
+ | III.15.27 | \\(k = \frac{2 \pi}{N b} s\\) |
95
 
96
 
97
  ### Supported Tasks and Leaderboards
 
116
  1. train split (txt file, whitespace as a delimiter)
117
  2. val split (txt file, whitespace as a delimiter)
118
  3. test split (txt file, whitespace as a delimiter)
119
+ 4. true equation (pickle file for sympy object)
120
 
121
  ### Data Splits
122