albertvillanova HF staff commited on
Commit
1ba2c58
1 Parent(s): 07b9947

Delete loading script

Browse files
Files changed (1) hide show
  1. mnist.py +0 -120
mnist.py DELETED
@@ -1,120 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """MNIST Data Set"""
18
-
19
-
20
- import struct
21
-
22
- import numpy as np
23
-
24
- import datasets
25
- from datasets.tasks import ImageClassification
26
-
27
-
28
- _CITATION = """\
29
- @article{lecun2010mnist,
30
- title={MNIST handwritten digit database},
31
- author={LeCun, Yann and Cortes, Corinna and Burges, CJ},
32
- journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist},
33
- volume={2},
34
- year={2010}
35
- }
36
- """
37
-
38
- _DESCRIPTION = """\
39
- The MNIST dataset consists of 70,000 28x28 black-and-white images in 10 classes (one for each digits), with 7,000
40
- images per class. There are 60,000 training images and 10,000 test images.
41
- """
42
-
43
- _URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"
44
- _URLS = {
45
- "train_images": "train-images-idx3-ubyte.gz",
46
- "train_labels": "train-labels-idx1-ubyte.gz",
47
- "test_images": "t10k-images-idx3-ubyte.gz",
48
- "test_labels": "t10k-labels-idx1-ubyte.gz",
49
- }
50
-
51
-
52
- class MNIST(datasets.GeneratorBasedBuilder):
53
- """MNIST Data Set"""
54
-
55
- BUILDER_CONFIGS = [
56
- datasets.BuilderConfig(
57
- name="mnist",
58
- version=datasets.Version("1.0.0"),
59
- description=_DESCRIPTION,
60
- )
61
- ]
62
-
63
- def _info(self):
64
- return datasets.DatasetInfo(
65
- description=_DESCRIPTION,
66
- features=datasets.Features(
67
- {
68
- "image": datasets.Image(),
69
- "label": datasets.features.ClassLabel(names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]),
70
- }
71
- ),
72
- supervised_keys=("image", "label"),
73
- homepage="http://yann.lecun.com/exdb/mnist/",
74
- citation=_CITATION,
75
- task_templates=[
76
- ImageClassification(
77
- image_column="image",
78
- label_column="label",
79
- )
80
- ],
81
- )
82
-
83
- def _split_generators(self, dl_manager):
84
- urls_to_download = {key: _URL + fname for key, fname in _URLS.items()}
85
- downloaded_files = dl_manager.download_and_extract(urls_to_download)
86
- return [
87
- datasets.SplitGenerator(
88
- name=datasets.Split.TRAIN,
89
- gen_kwargs={
90
- "filepath": (downloaded_files["train_images"], downloaded_files["train_labels"]),
91
- "split": "train",
92
- },
93
- ),
94
- datasets.SplitGenerator(
95
- name=datasets.Split.TEST,
96
- gen_kwargs={
97
- "filepath": (downloaded_files["test_images"], downloaded_files["test_labels"]),
98
- "split": "test",
99
- },
100
- ),
101
- ]
102
-
103
- def _generate_examples(self, filepath, split):
104
- """This function returns the examples in the raw form."""
105
- # Images
106
- with open(filepath[0], "rb") as f:
107
- # First 16 bytes contain some metadata
108
- _ = f.read(4)
109
- size = struct.unpack(">I", f.read(4))[0]
110
- _ = f.read(8)
111
- images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28)
112
-
113
- # Labels
114
- with open(filepath[1], "rb") as f:
115
- # First 8 bytes contain some metadata
116
- _ = f.read(8)
117
- labels = np.frombuffer(f.read(), dtype=np.uint8)
118
-
119
- for idx in range(size):
120
- yield idx, {"image": images[idx], "label": str(labels[idx])}