KnowledgeMath / KnowledgeMath.py
yilunzhao's picture
Rename knowledgemath.py to KnowledgeMath.py
11f7b03
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
import datasets
_LICENSE = "MIT License"
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_DATA_URL = (
"https://raw.githubusercontent.com/yilunzhao/RobuT/main/robut_data.zip"
)
class KnowledgeMath(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="main",
)
]
DEFAULT_CONFIG_NAME = (
"main" # It's not mandatory to have a default configuration. Just use one if it make sense.
)
def _info(self):
features = datasets.Features(
{
"question_id": datasets.Value("string"),
"question": datasets.Value("string"),
"tables": datasets.features.Sequence(datasets.Value("string")),
"topic": datasets.Value("string"),
"ground_truth": datasets.Value("float64"),
"python_solution": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
features=features,
homepage=_HOMEPAGE,
)
def _split_generators(self, dl_manager):
validation_path = datasets.DownloadManager.download("https://huggingface.co/datasets/yale-nlp/KnowledgeMath/raw/main/validation.json")
test_path = datasets.DownloadManager.download("https://huggingface.co/datasets/yale-nlp/KnowledgeMath/raw/main/test.json")
return [
datasets.SplitGenerator(
name="validation",
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": validation_path
},
),
datasets.SplitGenerator(
name="test",
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": test_path
},
)
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath):
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
qa_data = json.load(open(filepath))
for idx, example in enumerate(qa_data):
yield idx, {
"question_id": example["question_id"],
"question": example["question"],
"tables": example["tables"],
"topic": example["topic"],
"ground_truth": example["ground_truth"],
"python_solution": example["python_solution"],
}